from kg_rag.utility import * import sys from tqdm import tqdm CHAT_MODEL_ID = sys.argv[1] QUESTION_PATH = config_data["MCQ_PATH"] SYSTEM_PROMPT = system_prompts["MCQ_QUESTION_PROMPT_BASED"] SAVE_PATH = config_data["SAVE_RESULTS_PATH"] TEMPERATURE = config_data["LLM_TEMPERATURE"] CHAT_DEPLOYMENT_ID = CHAT_MODEL_ID save_name = "_".join(CHAT_MODEL_ID.split("-"))+"_prompt_based_response_for_two_hop_mcq_from_monarch_and_robokop.csv" def main(): start_time = time.time() question_df = pd.read_csv(QUESTION_PATH) answer_list = [] for index, row in tqdm(question_df.head(50).iterrows(), total=50): question = "Question: "+ row["text"] output = get_GPT_response(question, SYSTEM_PROMPT, CHAT_MODEL_ID, CHAT_DEPLOYMENT_ID, temperature=TEMPERATURE) answer_list.append((row["text"], row["correct_node"], output)) answer_df = pd.DataFrame(answer_list, columns=["question", "correct_answer", "llm_answer"]) answer_df.to_csv(os.path.join(SAVE_PATH, save_name), index=False, header=True) print("Completed in {} min".format((time.time()-start_time)/60)) if __name__ == "__main__": main()