from langchain import PromptTemplate, LLMChain from kg_rag.utility import * import argparse parser = argparse.ArgumentParser() parser.add_argument('-m', type=str, default='method-1', help='Method to choose for Llama model') args = parser.parse_args() METHOD = args.m SYSTEM_PROMPT = system_prompts["PROMPT_BASED_TEXT_GENERATION"] MODEL_NAME = config_data["LLAMA_MODEL_NAME"] BRANCH_NAME = config_data["LLAMA_MODEL_BRANCH"] CACHE_DIR = config_data["LLM_CACHE_DIR"] INSTRUCTION = "Question: {question}" def main(): llm = llama_model(MODEL_NAME, BRANCH_NAME, CACHE_DIR, stream=True, method=METHOD) template = get_prompt(INSTRUCTION, SYSTEM_PROMPT) prompt = PromptTemplate(template=template, input_variables=["question"]) llm_chain = LLMChain(prompt=prompt, llm=llm) print(" ") question = input("Enter your question : ") print("Here is the prompt-based answer:") print("") output = llm_chain.run(question) if __name__ == "__main__": main()