summaryrefslogtreecommitdiff
path: root/ga_demo
diff options
context:
space:
mode:
Diffstat (limited to 'ga_demo')
-rw-r--r--ga_demo/tsp_demo.py217
1 files changed, 217 insertions, 0 deletions
diff --git a/ga_demo/tsp_demo.py b/ga_demo/tsp_demo.py
new file mode 100644
index 0000000..5a5a406
--- /dev/null
+++ b/ga_demo/tsp_demo.py
@@ -0,0 +1,217 @@
+import numpy as np
+import random
+import operator
+import pandas as pd
+import matplotlib.pyplot as plt
+from operator import itemgetter
+
+
+class City:
+ def __init__(self, x, y):
+ self.x = x
+ self.y = y
+
+ def distance(self, city):
+ x_dis = abs(self.x - city.x)
+ y_dis = abs(self.y - city.y)
+ distance = np.sqrt((x_dis ** 2) + (y_dis ** 2))
+ return distance
+
+ def __repr__(self):
+ return "(" + str(self.x) + "," + str(self.y) + ")"
+
+
+# 越小越好
+class Fitness:
+ def __init__(self, route):
+ self.route = route
+ self.distance = 0
+ self.fitness = 0.0
+
+ def route_distance(self):
+ if self.distance == 0:
+ path_distance = 0
+ for i in range(0, len(self.route)):
+ from_city = self.route[i]
+ to_city = None
+ if i + 1 < len(self.route):
+ to_city = self.route[i + 1]
+ else:
+ to_city = self.route[0]
+ path_distance += from_city.distance(to_city)
+ self.distance = path_distance
+ return self.distance
+
+ def route_fitness(self):
+ if self.fitness == 0:
+ self.fitness = 1 / float(self.route_distance())
+ return self.fitness
+
+
+def createRoute(cityList):
+ route = random.sample(cityList, len(cityList))
+ return route
+
+
+def initialPopulation(popSize, cityList):
+ population = []
+
+ for i in range(0, popSize):
+ population.append(createRoute(cityList))
+ return population
+
+
+def rankRoutes(population):
+ fitnessResults = {}
+ for i in range(0,len(population)):
+ fitnessResults[i] = Fitness(population[i]).route_fitness()
+ return sorted(fitnessResults.items(), key=operator.itemgetter(1), reverse=True)
+
+
+def selection(popRanked, eliteSize):
+ selectionResults = []
+ df = pd.DataFrame(np.array(popRanked), columns=["Index", "Fitness"])
+ df['cum_sum'] = df.Fitness.cumsum()
+ df['cum_perc'] = 100 * df.cum_sum / df.Fitness.sum()
+
+ for i in range(0, eliteSize):
+ selectionResults.append(popRanked[i][0])
+ for i in range(0, len(popRanked) - eliteSize):
+ pick = 100 * random.random()
+ for i in range(0, len(popRanked)):
+ if pick <= df.iat[i, 3]:
+ selectionResults.append(popRanked[i][0])
+ break
+ return selectionResults
+
+
+def matingPool(population, selectionResults):
+ matingpool = []
+ for i in range(0, len(selectionResults)):
+ index = selectionResults[i]
+ matingpool.append(population[index])
+ return matingpool
+
+
+def breed(parent1, parent2):
+ child = []
+ childP1 = []
+ childP2 = []
+
+ geneA = int(random.random() * len(parent1))
+ geneB = int(random.random() * len(parent1))
+
+ startGene = min(geneA, geneB)
+ endGene = max(geneA, geneB)
+
+ # save_sub_city_list = parent1[startGene: endGene]
+ # target_index = 0
+ # for i in range(len(parent2)):
+ # while startGene < len(child) < endGene-1:
+ # child.append(save_sub_city_list[target_index])
+ # target_index += 1
+ # continue
+ # if parent2[i] not in save_sub_city_list:
+ # child.append(parent2[i])
+ for i in range(startGene, endGene):
+ childP1.append(parent1[i])
+
+ childP2 = [item for item in parent2 if item not in childP1]
+
+ child = childP1 + childP2
+ return child
+
+
+def breedPopulation(matingpool, eliteSize):
+ children = []
+ length = len(matingpool) - eliteSize
+ pool = random.sample(matingpool, len(matingpool))
+
+ for i in range(0, eliteSize):
+ children.append(matingpool[i])
+
+ for i in range(0, length):
+ child = breed(pool[i], pool[len(matingpool) - i - 1])
+ children.append(child)
+ return children
+
+
+def mutate(individual, mutationRate):
+ for swapped in range(len(individual)):
+ if (random.random() < mutationRate):
+ swapWith = int(random.random() * len(individual))
+
+ city1 = individual[swapped]
+ city2 = individual[swapWith]
+
+ individual[swapped] = city2
+ individual[swapWith] = city1
+ return individual
+
+
+def mutatePopulation(population, mutationRate):
+ mutatedPop = []
+
+ for ind in range(0, len(population)):
+ mutatedInd = mutate(population[ind], mutationRate)
+ mutatedPop.append(mutatedInd)
+ return mutatedPop
+
+
+
+def nextGeneration(currentGen, eliteSize, mutationRate):
+ popRanked = rankRoutes(currentGen)
+ selectionResults = selection(popRanked, eliteSize)
+ matingpool = matingPool(currentGen, selectionResults)
+ children = breedPopulation(matingpool, eliteSize)
+ nextGeneration = mutatePopulation(children, mutationRate)
+ return nextGeneration
+
+
+def geneticAlgorithm(population, popSize, eliteSize, mutationRate, generations):
+ pop = initialPopulation(popSize, population)
+ print("Initial distance: " + str(1 / rankRoutes(pop)[0][1]))
+
+ for i in range(0, generations):
+ pop = nextGeneration(pop, eliteSize, mutationRate)
+ print(f"generation: {i}, distance: {1 / rankRoutes(pop)[0][1]}")
+
+ print("Final distance: " + str(1 / rankRoutes(pop)[0][1]))
+ bestRouteIndex = rankRoutes(pop)[0][0]
+ bestRoute = pop[bestRouteIndex]
+ return bestRoute
+
+
+def geneticAlgorithmPlot(population, popSize, eliteSize, mutationRate, generations):
+ pop = initialPopulation(popSize, population)
+ progress = []
+ progress.append(1 / rankRoutes(pop)[0][1])
+
+ for i in range(0, generations):
+ pop = nextGeneration(pop, eliteSize, mutationRate)
+ progress.append(1 / rankRoutes(pop)[0][1])
+
+ plt.plot(progress)
+ plt.ylabel('Distance')
+ plt.xlabel('Generation')
+ plt.show()
+
+
+if __name__ == '__main__':
+
+ cityList = []
+
+ for i in range(0, 25):
+ cityList.append(City(x=int(random.random() * 200), y=int(random.random() * 200)))
+
+ # plt.scatter(list(map(lambda city: city.x, cityList)), list(map(lambda city: city.y, cityList)))
+ # plt.show()
+ best_route = geneticAlgorithm(population=cityList, popSize=100, eliteSize=20, mutationRate=0.01, generations=400)
+ # geneticAlgorithmPlot(population=cityList, popSize=100, eliteSize=20, mutationRate=0.01, generations=500)
+ print()
+ # for i in range(0, len(best_route), 2):
+ x = list(map(lambda city: city.x, best_route))
+ y = list(map(lambda city: city.y, best_route))
+ plt.scatter(x, y)
+ plt.plot(x, y, 'ro-')
+ plt.show()