From 76896af96a12d36bb530eebc4309c29c8eae66b0 Mon Sep 17 00:00:00 2001 From: chunhuizhang Date: Fri, 10 Feb 2023 22:52:10 +0800 Subject: test jupyter --- dl/tutorials/test_jupyter_notebook.ipynb | 176 +++++++++++++++++++++++++++++++ 1 file changed, 176 insertions(+) create mode 100644 dl/tutorials/test_jupyter_notebook.ipynb (limited to 'dl/tutorials') diff --git a/dl/tutorials/test_jupyter_notebook.ipynb b/dl/tutorials/test_jupyter_notebook.ipynb new file mode 100644 index 0000000..cfe5de8 --- /dev/null +++ b/dl/tutorials/test_jupyter_notebook.ipynb @@ -0,0 +1,176 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "id": "4764eedc", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/chzhang/anaconda3/envs/ldm/lib/python3.8/site-packages/tqdm/auto.py:22: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n", + " from .autonotebook import tqdm as notebook_tqdm\n" + ] + } + ], + "source": [ + "import torch " + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "664bf7de", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "'1.11.0'" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "torch.__version__" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "1a845e6b", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "True" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "torch.cuda.is_available()" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "1749f11f", + "metadata": {}, + "outputs": [], + "source": [ + "from torchvision import models" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "b6fd37e4", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "dict_keys(['__name__', '__doc__', '__package__', '__loader__', '__spec__', '__path__', '__file__', '__cached__', '__builtins__', 'alexnet', 'AlexNet', 'convnext', 'ConvNeXt', 'convnext_tiny', 'convnext_small', 'convnext_base', 'convnext_large', 'resnet', 'ResNet', 'resnet18', 'resnet34', 'resnet50', 'resnet101', 'resnet152', 'resnext50_32x4d', 'resnext101_32x8d', 'wide_resnet50_2', 'wide_resnet101_2', 'vgg', 'VGG', 'vgg11', 'vgg11_bn', 'vgg13', 'vgg13_bn', 'vgg16', 'vgg16_bn', 'vgg19_bn', 'vgg19', 'squeezenet', 'SqueezeNet', 'squeezenet1_0', 'squeezenet1_1', 'inception', 'Inception3', 'inception_v3', 'InceptionOutputs', '_InceptionOutputs', 'densenet', 'DenseNet', 'densenet121', 'densenet169', 'densenet201', 'densenet161', 'googlenet', 'GoogLeNet', 'GoogLeNetOutputs', '_GoogLeNetOutputs', '_utils', 'mobilenetv2', 'mobilenetv3', 'mobilenet', 'MobileNetV2', 'mobilenet_v2', 'MobileNetV3', 'mobilenet_v3_large', 'mobilenet_v3_small', 'mnasnet', 'MNASNet', 'mnasnet0_5', 'mnasnet0_75', 'mnasnet1_0', 'mnasnet1_3', 'shufflenetv2', 'ShuffleNetV2', 'shufflenet_v2_x0_5', 'shufflenet_v2_x1_0', 'shufflenet_v2_x1_5', 'shufflenet_v2_x2_0', 'efficientnet', 'EfficientNet', 'efficientnet_b0', 'efficientnet_b1', 'efficientnet_b2', 'efficientnet_b3', 'efficientnet_b4', 'efficientnet_b5', 'efficientnet_b6', 'efficientnet_b7', 'regnet', 'RegNet', 'regnet_y_400mf', 'regnet_y_800mf', 'regnet_y_1_6gf', 'regnet_y_3_2gf', 'regnet_y_8gf', 'regnet_y_16gf', 'regnet_y_32gf', 'regnet_y_128gf', 'regnet_x_400mf', 'regnet_x_800mf', 'regnet_x_1_6gf', 'regnet_x_3_2gf', 'regnet_x_8gf', 'regnet_x_16gf', 'regnet_x_32gf', 'vision_transformer', 'VisionTransformer', 'vit_b_16', 'vit_b_32', 'vit_l_16', 'vit_l_32', 'detection', 'feature_extraction', 'optical_flow', 'quantization', 'segmentation', 'video'])" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "models.__dict__.keys()" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "aec9cafa", + "metadata": {}, + "outputs": [], + "source": [ + "model = models.__dict__['resnet152']()" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "29409f63", + "metadata": {}, + "outputs": [], + "source": [ + "device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "b11e424b", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "device(type='cuda')" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "device" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "252ac26f", + "metadata": {}, + "outputs": [], + "source": [ + "model = models.__dict__['resnet152']().to(device)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "65262e8e", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.5" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} -- cgit v1.2.3