import os import matplotlib.pyplot as plt import numpy as np from PIL import Image from keras.applications import imagenet_utils from keras.applications import resnet50 from keras.models import Model IMAGE_DIR = '/Users/chunhuizhang/workspaces/00_datasets/images/INRIA Holidays dataset /jpg' DATA_DIR = './data' def image_batch_generator(image_names, batch_size): num_batches = len(image_names) // batch_size for i in range(num_batches): batch = image_names[i * batch_size: (i + 1) * batch_size] yield batch batch = image_names[(i + 1) * batch_size:] yield batch def vectorize_images(image_dir, image_size, preprocessor, model, vector_file, batch_size=32): image_names = os.listdir(image_dir) num_vecs = 0 fvec = open(vector_file, "w") for image_batch in image_batch_generator(image_names, batch_size): batched_images = [] for image_name in image_batch: image = plt.imread(os.path.join(image_dir, image_name)) # image = imresize(image, (image_size, image_size)) image = np.asarray(Image.fromarray(image).resize((image_size, image_size))) batched_images.append(image) X = preprocessor(np.array(batched_images, dtype="float32")) vectors = model.predict(X) for i in range(vectors.shape[0]): if num_vecs % 100 == 0: print("{:d}/{:d} vectors generated".format(num_vecs, vectors.shape[0])) image_vector = ",".join(["{:.5e}".format(v) for v in vectors[i].tolist()]) # print(image_batch[i], image_vector) # print(type(image_batch[i]), type(image_vector)) fvec.write("{:s}\t{:s}\n".format(image_batch[i], image_vector)) num_vecs += 1 print("{:d} vectors generated".format(num_vecs)) fvec.close() def generate_features(model, image_size, vector_file): model = Model(input=model.input, output=model.get_layer("avg_pool").output) preprocessor = imagenet_utils.preprocess_input vectorize_images(IMAGE_DIR, image_size, preprocessor, model, vector_file) if __name__ == '__main__': IMAGE_SIZE = 224 # vgg16_model = vgg16.VGG16(weights="imagenet", include_top=True) # VECTOR_FILE = os.path.join(DATA_DIR, "vgg19-vectors.tsv") # generate_features(vgg16_model, IMAGE_SIZE, VECTOR_FILE) VECTOR_FILE = os.path.join(DATA_DIR, "resnet-vectors.tsv") resnet_model = resnet50.ResNet50(weights="imagenet", include_top=True) generate_features(resnet_model, IMAGE_SIZE, VECTOR_FILE)