import tensorflow as tf from tensorflow.keras.applications.vgg16 import VGG16 from tensorflow.keras.applications.inception_v3 import InceptionV3 from tensorflow.keras.applications import Xception, ResNet50 from tensorflow.keras.utils import plot_model from tensorflow.keras.layers import * from tensorflow.keras import backend as K from keras.applications.vgg16 import VGG16 from keras.applications import Xception vgg_with_top = VGG16(include_top=True) # plot_model(vgg_with_top, to_file='vgg16_with_top.png', show_shapes=True) vgg_without_top = VGG16(include_top=False) # plot_model(vgg_without_top, to_file='vgg16_without_top.png', show_shapes=True) inception = InceptionV3() # plot_model(inception, to_file='inception_v3_withtop.png', show_shapes=True) xception = Xception() # plot_model(xception, to_file='xception_with_top.png', show_shapes=True) resnet = ResNet50() plot_model(resnet, to_file='resnet_with_top.png', show_shapes=True) # first_input = Input(shape=(224, 224, 3)) # first_conv = Conv2D(96, kernel_size=(8, 8), strides=(16, 16), padding='same')(first_input) # print(first_conv) # first_max = MaxPool2D(pool_size=(3, 3), strides=(4, 4), padding='same')(first_conv) # print(first_max) # first_max = Flatten()(first_max) # first_max = Lambda(lambda x: K.l2_normalize(x, axis=1))(first_max) # # second_input = Input(shape=(224, 224, 3)) # second_conv = Conv2D(96, kernel_size=(8, 8), strides=(32, 32), padding='same')(second_input) # print(second_conv) # second_max = MaxPool2D(pool_size=(7, 7), strides=(2, 2), padding='same')(second_conv) # print(second_max) # second_max = Flatten()(second_max) # second_max = Lambda(lambda x: K.l2_normalize(x, axis=1))(second_max) # merge_one = concatenate([first_max, second_max]) # print(first_max) # print(second_max) # print(merge_one)