import cv2 import imutils import numpy as np from imutils import paths from imutils.object_detection import non_max_suppression def hog_clf(descriptor_type='default'): if descriptor_type == 'daimler': winSize = (48, 96) blockSize = (16, 16) blockStride = (8, 8) cellSize = (8, 8) nbins = 9 hog = cv2.HOGDescriptor(winSize, blockSize, blockStride, cellSize, nbins) hog.setSVMDetector(cv2.HOGDescriptor_getDaimlerPeopleDetector()) return hog else: winSize = (64, 128) blockSize = (16, 16) blockStride = (8, 8) cellSize = (8, 8) nbins = 9 hog = cv2.HOGDescriptor(winSize, blockSize, blockStride, cellSize, nbins) hog.setSVMDetector(cv2.HOGDescriptor_getDefaultPeopleDetector()) return hog def detect_image(hog, image): # image = cv2.imread(image_path) image = imutils.resize(image, width=min(400, image.shape[1])) orig = image.copy() # detect people in the image (rects, weights) = hog.detectMultiScale(image, winStride=(4, 4), padding=(8, 8), scale=1.1) # draw the original bounding boxes for (x, y, w, h) in rects: cv2.rectangle(orig, (x, y), (x + w, y + h), (0, 0, 255), 2) # apply non-maxima suppression to the bounding boxes using a # fairly large overlap threshold to try to maintain overlapping # boxes that are still people rects = np.array([[x, y, x + w, y + h] for (x, y, w, h) in rects]) pick = non_max_suppression(rects, probs=None, overlapThresh=0.65) # draw the final bounding boxes for (xA, yA, xB, yB) in pick: cv2.rectangle(image, (xA, yA), (xB, yB), (0, 255, 0), 2) # show some information on the number of bounding boxes print("[INFO] {} original boxes, {} after suppression".format( len(rects), len(pick))) return image def detect_images(hog, images_path): # loop over the image paths for image_path in paths.list_images(images_path): # load the image and resize it to (1) reduce detection time # and (2) improve detection accuracy orig = cv2.imread(image_path) image = detect_image(hog, orig) # show the output images cv2.imshow("Before NMS", orig) cv2.imshow("After NMS", image) if cv2.waitKey(0) & 0xFF == ord('q'): break def detect_video(hog, video_path): cap = cv2.VideoCapture(video_path) while True: ret, frame = cap.read() if not ret: break detected = detect_image(hog, frame) cv2.imshow("capture", detected) if cv2.waitKey(100) & 0xFF == ord('q'): break cap.release() cv2.destroyAllWindows() if __name__ == '__main__': # ap = argparse.ArgumentParser() # ap.add_argument("-i", "--images", required=True, help="path to images directory") # args = vars(ap.parse_args()) # detect_images(args['images']) hog = cv2.HOGDescriptor() hog.setSVMDetector(cv2.HOGDescriptor_getDefaultPeopleDetector()) hog = hog_clf() images_path = '../data/imgs/persons' detect_images(hog, images_path) video_path = '../data/video/vtest.avi' detect_video(hog, video_path)