import cv2 import numpy as np src = cv2.imread("sample_person.jpg") src = cv2.resize(src, (0, 0), fx=0.5, fy=0.5) r = cv2.selectROI('input', src, False) # 返回 (x_min, y_min, w, h) # roi区域 roi = src[int(r[1]):int(r[1] + r[3]), int(r[0]):int(r[0] + r[2])] img = src.copy() cv2.rectangle(img, (int(r[0]), int(r[1])), (int(r[0]) + int(r[2]), int(r[1]) + int(r[3])), (255, 0, 0), 2) # 原图mask mask = np.zeros(src.shape[:2], dtype=np.uint8) # 矩形roi rect = (int(r[0]), int(r[1]), int(r[2]), int(r[3])) # 包括前景的矩形,格式为(x,y,w,h) background = cv2.imread("sample_giraffe.jpg") h, w, ch = src.shape background = cv2.resize(background, (w, h)) # cv.imwrite("background.jpg", background) # mask = np.zeros(src.shape[:2], dtype=np.uint8) bgdmodel = np.zeros((1, 65), np.float64) fgdmodel = np.zeros((1, 65), np.float64) cv2.grabCut(src, mask, rect, bgdmodel, fgdmodel, 5, mode=cv2.GC_INIT_WITH_RECT) mask2 = np.where((mask == 1) | (mask == 3), 255, 0).astype('uint8') # 高斯模糊,边缘变得光滑 se = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3)) cv2.dilate(mask2, se, mask2) mask2 = cv2.GaussianBlur(mask2, (5, 5), 0) cv2.imshow('background-mask', mask2) # cv.imwrite('background-mask.jpg', mask2) # 虚化背景 # background = cv.GaussianBlur(background, (0, 0), 3) mask2 = mask2 / 255.0 print('mask2 shape', mask2.shape) a = mask2[..., None] print('a shape', a.shape) # 融合方法 com = a*fg + (1-a)*bg result = a * (src.astype(np.float32)) + (1 - a) * (background.astype(np.float32)) # result = cv2.bitwise_and(background.astype(np.uint8), background.astype(np.uint8), mask=mask2) cv2.imshow("result", result.astype(np.uint8)) cv2.imwrite("result.jpg", result.astype(np.uint8)) cv2.waitKey(0) cv2.destroyAllWindows()