{ "cells": [ { "cell_type": "code", "execution_count": 1, "id": "4764eedc", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/home/chzhang/anaconda3/envs/ldm/lib/python3.8/site-packages/tqdm/auto.py:22: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n", " from .autonotebook import tqdm as notebook_tqdm\n" ] } ], "source": [ "import torch " ] }, { "cell_type": "code", "execution_count": 2, "id": "664bf7de", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "'1.11.0'" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "torch.__version__" ] }, { "cell_type": "code", "execution_count": 3, "id": "1a845e6b", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "True" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "torch.cuda.is_available()" ] }, { "cell_type": "code", "execution_count": 4, "id": "1749f11f", "metadata": {}, "outputs": [], "source": [ "from torchvision import models" ] }, { "cell_type": "code", "execution_count": 5, "id": "b6fd37e4", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "dict_keys(['__name__', '__doc__', '__package__', '__loader__', '__spec__', '__path__', '__file__', '__cached__', '__builtins__', 'alexnet', 'AlexNet', 'convnext', 'ConvNeXt', 'convnext_tiny', 'convnext_small', 'convnext_base', 'convnext_large', 'resnet', 'ResNet', 'resnet18', 'resnet34', 'resnet50', 'resnet101', 'resnet152', 'resnext50_32x4d', 'resnext101_32x8d', 'wide_resnet50_2', 'wide_resnet101_2', 'vgg', 'VGG', 'vgg11', 'vgg11_bn', 'vgg13', 'vgg13_bn', 'vgg16', 'vgg16_bn', 'vgg19_bn', 'vgg19', 'squeezenet', 'SqueezeNet', 'squeezenet1_0', 'squeezenet1_1', 'inception', 'Inception3', 'inception_v3', 'InceptionOutputs', '_InceptionOutputs', 'densenet', 'DenseNet', 'densenet121', 'densenet169', 'densenet201', 'densenet161', 'googlenet', 'GoogLeNet', 'GoogLeNetOutputs', '_GoogLeNetOutputs', '_utils', 'mobilenetv2', 'mobilenetv3', 'mobilenet', 'MobileNetV2', 'mobilenet_v2', 'MobileNetV3', 'mobilenet_v3_large', 'mobilenet_v3_small', 'mnasnet', 'MNASNet', 'mnasnet0_5', 'mnasnet0_75', 'mnasnet1_0', 'mnasnet1_3', 'shufflenetv2', 'ShuffleNetV2', 'shufflenet_v2_x0_5', 'shufflenet_v2_x1_0', 'shufflenet_v2_x1_5', 'shufflenet_v2_x2_0', 'efficientnet', 'EfficientNet', 'efficientnet_b0', 'efficientnet_b1', 'efficientnet_b2', 'efficientnet_b3', 'efficientnet_b4', 'efficientnet_b5', 'efficientnet_b6', 'efficientnet_b7', 'regnet', 'RegNet', 'regnet_y_400mf', 'regnet_y_800mf', 'regnet_y_1_6gf', 'regnet_y_3_2gf', 'regnet_y_8gf', 'regnet_y_16gf', 'regnet_y_32gf', 'regnet_y_128gf', 'regnet_x_400mf', 'regnet_x_800mf', 'regnet_x_1_6gf', 'regnet_x_3_2gf', 'regnet_x_8gf', 'regnet_x_16gf', 'regnet_x_32gf', 'vision_transformer', 'VisionTransformer', 'vit_b_16', 'vit_b_32', 'vit_l_16', 'vit_l_32', 'detection', 'feature_extraction', 'optical_flow', 'quantization', 'segmentation', 'video'])" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "models.__dict__.keys()" ] }, { "cell_type": "code", "execution_count": 8, "id": "aec9cafa", "metadata": {}, "outputs": [], "source": [ "model = models.__dict__['resnet152']()" ] }, { "cell_type": "code", "execution_count": 9, "id": "29409f63", "metadata": {}, "outputs": [], "source": [ "device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')" ] }, { "cell_type": "code", "execution_count": 10, "id": "b11e424b", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "device(type='cuda')" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "device" ] }, { "cell_type": "code", "execution_count": 11, "id": "252ac26f", "metadata": {}, "outputs": [], "source": [ "model = models.__dict__['resnet152']().to(device)" ] }, { "cell_type": "code", "execution_count": null, "id": "65262e8e", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.5" } }, "nbformat": 4, "nbformat_minor": 5 }