from scipy.optimize import minimize, LinearConstraint import numpy as np def test1(): fun = lambda x: x**2 + 2*x - 3 x0 = 1 res = minimize(fun, [x0], bounds=[[0, None]], ) print(res) def test2(): fun = lambda x: (x[0]-2)**2 + 4*(x[1]-1)**2 x0 = [0, 0] cons = ({'type': 'ineq', 'fun': lambda x: 2 - x[0] - 2*x[1]}) res = minimize(fun, np.asarray(x0), method='slsqp', constraints=cons, options={'disp': True}) print(res) def test3(): fun = lambda x: -x[0]**2*x[1] x0 = np.asarray([0, 0]) cons = ({'type': 'eq', 'fun': lambda x: x[0]**2+x[1]**2-1}) res = minimize(fun, x0, constraints=cons, options={'disp': True}) print(res) if __name__ == '__main__': test3()