from scipy.optimize import minimize, LinearConstraint, rosen, rosen_der, rosen_hess import numpy as np import matplotlib.pyplot as plt def test1(): fun = lambda x: x**2 + 2*x - 3 x0 = np.asarray(1) res = minimize(fun, x0, bounds=[[0, None]], ) print(res) def test2(): fun = lambda x: (x[0]-2)**2 + 4*(x[1]-1)**2 x0 = [0, 0] cons = ({'type': 'ineq', 'fun': lambda x: 2 - x[0] - 2*x[1]}) res = minimize(fun, np.asarray(x0), method='slsqp', constraints=cons, options={'disp': True}) print(res) def test3(): fun = lambda x: -x[0]**2*x[1] x0 = np.asarray([0, 0]) cons = ({'type': 'eq', 'fun': lambda x: x[0]**2+x[1]**2-1}) res = minimize(fun, x0, constraints=cons, options={'disp': True}) print(res) def example_16_4(): func = lambda x: (x[0]-1)**2 + (x[1] - 2.5)**2 x0 = np.asarray([0, 0]) # bounds = np.asarray([[0, None], # [0, None]]) cons = ({'type': 'ineq', 'fun': lambda x: x[0] - 2*x[1] + 2}, {'type': 'ineq', 'fun': lambda x: -x[0] - 2*x[1] + 6}, {'type': 'ineq', 'fun': lambda x: -x[0] + 2*x[1] + 2}, {'type': 'ineq', 'fun': lambda x: x[0]}, {'type': 'ineq', 'fun': lambda x: x[1]}) res = minimize(func, x0, # bounds=bounds, constraints=cons, jac=lambda x: np.asarray([2*(x[0]-1), 2*(x[1] - 2.5)]), # hess=lambda x: np.asarray([[2, 0], [0, 2]]), method='SLSQP') print(res) if __name__ == '__main__': example_16_4()