from ortools.linear_solver import pywraplp def main(): # Create the mip solver with the SCIP backend. solver = pywraplp.Solver.CreateSolver('SCIP') infinity = solver.infinity() # x and y are integer non-negative variables. x = solver.IntVar(3, infinity, 'x') y = solver.IntVar(0, infinity, 'y') t = solver.IntVar(0, infinity, 't') print('Number of variables =', solver.NumVariables()) solver.Add(t == x-2) # x + 7 * y <= 17.5. solver.Add(y == 2*x/t) # x <= 3.5. # solver.Add(x <= 3.5) print('Number of constraints =', solver.NumConstraints()) # Maximize x + 10 * y. solver.Maximize(0) status = solver.Solve() if status == pywraplp.Solver.OPTIMAL: print('Solution:') print('Objective value =', solver.Objective().Value()) print('x =', x.solution_value()) print('y =', y.solution_value()) else: print('The problem does not have an optimal solution.') print('\nAdvanced usage:') print('Problem solved in %f milliseconds' % solver.wall_time()) print('Problem solved in %d iterations' % solver.iterations()) print('Problem solved in %d branch-and-bound nodes' % solver.nodes()) if __name__ == '__main__': main()