from torch.utils.data import Dataset from torchvision import datasets from torchvision import transforms as T import torch training_dataset = datasets.FashionMNIST(root='./data', train=True, transform=T.ToTensor(), download=True) test_dataset = datasets.FashionMNIST(root='./data', train=False, transform=T.ToTensor(), download=True) print(training_dataset.classes) training_loader = torch.utils.data.DataLoader(training_dataset, batch_size=4, shuffle=True, num_workers=0) validation_loader = torch.utils.data.DataLoader(test_dataset, batch_size=4, shuffle=False, num_workers=0) # next(iter(training_loader)) for i, data in enumerate(training_loader): batch_images, batch_labels = data break