{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "## 1. 依赖" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "ExecuteTime": { "end_time": "2022-12-04T11:43:09.702221Z", "start_time": "2022-12-04T11:43:09.500450Z" } }, "outputs": [], "source": [ "import gym" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 2. 环境(以 cartpole 为例)" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "ExecuteTime": { "end_time": "2022-12-04T11:43:10.882322Z", "start_time": "2022-12-04T11:43:10.873917Z" } }, "outputs": [], "source": [ "env_name = 'CartPole-v0'\n", "env = gym.make(env_name)" ] }, { "cell_type": "markdown", "metadata": { "ExecuteTime": { "end_time": "2022-12-04T10:39:54.826089Z", "start_time": "2022-12-04T10:39:54.823921Z" } }, "source": [ "### 2.1 env 成员" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "- 环境定义了动作空间及状态空间\n", "- 此外还需要(step(action)):\n", "$$\n", "\\begin{split}\n", "&R(s_t, a_t)=r_t\\\\\n", "&P(s_t,a_t)=s_{t+1}\n", "\\end{split}\n", "$$" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "ExecuteTime": { "end_time": "2022-12-04T11:36:42.119972Z", "start_time": "2022-12-04T11:36:42.107426Z" } }, "outputs": [ { "data": { "text/plain": [ ">>" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "env" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "ExecuteTime": { "end_time": "2022-12-04T11:36:49.966685Z", "start_time": "2022-12-04T11:36:49.962150Z" } }, "outputs": [ { "data": { "text/plain": [ "Discrete(2)" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "env.action_space" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "ExecuteTime": { "end_time": "2022-12-04T11:37:07.789565Z", "start_time": "2022-12-04T11:37:07.785005Z" } }, "outputs": [ { "data": { "text/plain": [ "0" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "env.action_space.sample()" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "ExecuteTime": { "end_time": "2022-12-04T11:37:20.687378Z", "start_time": "2022-12-04T11:37:20.683155Z" } }, "outputs": [ { "data": { "text/plain": [ "Box(-3.4028234663852886e+38, 3.4028234663852886e+38, (4,), float32)" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "env.observation_space" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "ExecuteTime": { "end_time": "2022-12-04T11:37:36.789515Z", "start_time": "2022-12-04T11:37:36.785299Z" } }, "outputs": [ { "data": { "text/plain": [ "array([-4.8000002e+00, -3.4028235e+38, -4.1887903e-01, -3.4028235e+38],\n", " dtype=float32)" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "env.observation_space.low" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "ExecuteTime": { "end_time": "2022-12-04T11:37:46.991799Z", "start_time": "2022-12-04T11:37:46.987407Z" } }, "outputs": [ { "data": { "text/plain": [ "array([4.8000002e+00, 3.4028235e+38, 4.1887903e-01, 3.4028235e+38],\n", " dtype=float32)" ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" } ], "source": [ "env.observation_space.high" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "ExecuteTime": { "end_time": "2022-12-04T11:37:55.306094Z", "start_time": "2022-12-04T11:37:55.300230Z" } }, "outputs": [ { "data": { "text/plain": [ "array([ 1.6534705e+00, -1.3081517e+38, -2.1108967e-01, 1.9319253e+38],\n", " dtype=float32)" ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ "env.observation_space.sample()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 2.2 用 action 与 env 交互" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "- 是一个 loop" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "ExecuteTime": { "end_time": "2022-12-04T11:40:48.246501Z", "start_time": "2022-12-04T11:40:48.203554Z" } }, "outputs": [], "source": [ "env.step??" ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "ExecuteTime": { "end_time": "2022-12-04T11:41:52.201203Z", "start_time": "2022-12-04T11:41:49.284589Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "total reward: 21.0\n" ] } ], "source": [ "done = False\n", "score = 0\n", "state = env.reset()\n", "\n", "while not done:\n", " env.render()\n", " action = env.action_space.sample()\n", " observation, reward, done, info = env.step(action)\n", " score += reward\n", "print(f'total reward: {score}')" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "ExecuteTime": { "end_time": "2022-12-04T11:43:16.749930Z", "start_time": "2022-12-04T11:43:12.658103Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "epoch: 1, total reward: 29.0\n", "epoch: 2, total reward: 22.0\n", "epoch: 3, total reward: 9.0\n", "epoch: 4, total reward: 34.0\n", "epoch: 5, total reward: 23.0\n" ] } ], "source": [ "for epoch in range(1, 5+1):\n", " done = False\n", " score = 0\n", " state = env.reset()\n", "\n", " while not done:\n", " env.render()\n", " action = env.action_space.sample()\n", " observation, reward, done, info = env.step(action)\n", " score += reward\n", " print(f'epoch: {epoch}, total reward: {score}')" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.8" } }, "nbformat": 4, "nbformat_minor": 2 }