#!/usr/bin/env python3 """ Gender Debias Utilities 基于GenderBench数据实现性别去偏见训练的工具函数 核心思想:生成除性别外完全一致的回答对 """ import sys import re import torch import torch.nn.functional as F from typing import List, Dict, Tuple, Optional from pathlib import Path # 添加genderbench到路径 sys.path.append('./genderbench') class GenderWordProcessor: """性别词汇处理器""" def __init__(self): # 性别词汇映射表 self.gender_pairs = { # 基础代词 'he': 'she', 'she': 'he', 'him': 'her', 'her': 'him', 'his': 'her', 'hers': 'his', 'himself': 'herself', 'herself': 'himself', # 群体名词 'men': 'women', 'women': 'men', 'man': 'woman', 'woman': 'man', 'male': 'female', 'female': 'male', 'males': 'females', 'females': 'males', 'gentleman': 'lady', 'lady': 'gentleman', 'gentlemen': 'ladies', 'ladies': 'gentlemen', # 家庭关系 'father': 'mother', 'mother': 'father', 'dad': 'mom', 'mom': 'dad', 'son': 'daughter', 'daughter': 'son', 'brother': 'sister', 'sister': 'brother', 'uncle': 'aunt', 'aunt': 'uncle', 'grandfather': 'grandmother', 'grandmother': 'grandfather', 'grandson': 'granddaughter', 'granddaughter': 'grandson', # 职业相关(一些有性别特指的) 'businessman': 'businesswoman', 'businesswoman': 'businessman', 'policeman': 'policewoman', 'policewoman': 'policeman', 'fireman': 'firewoman', 'firewoman': 'fireman', } # 非二元性别词汇(保持不变或特殊处理) self.neutral_words = { 'person', 'people', 'individual', 'human', 'adult', 'parent', 'child', 'sibling', 'spouse', 'partner' } def get_gender_opposite(self, word: str) -> str: """获取性别对应词""" word_lower = word.lower() if word_lower in self.gender_pairs: opposite = self.gender_pairs[word_lower] # 保持原始大小写 if word.isupper(): return opposite.upper() elif word.istitle(): return opposite.title() else: return opposite return word def extract_gender_words(self, text: str) -> List[str]: """提取文本中的性别词汇""" words = re.findall(r'\b\w+\b', text.lower()) gender_words = [] for word in words: if word in self.gender_pairs or word in self.neutral_words: gender_words.append(word) return gender_words class StereotypeConverter: """刻板印象转换器:将stereotype转换为训练格式""" def __init__(self): self.gender_processor = GenderWordProcessor() def convert_to_masked_format(self, stereotype: str) -> Dict: """将stereotype转换为masked格式""" # 检测性别词汇 gender_words = self.gender_processor.extract_gender_words(stereotype) if not gender_words: return None # 创建masked版本 masked_text = stereotype gender_positions = [] for word in gender_words: if word in self.gender_processor.gender_pairs: # 找到词汇位置并替换为[MASK] pattern = r'\b' + re.escape(word) + r'\b' matches = list(re.finditer(pattern, masked_text, re.IGNORECASE)) for match in matches: gender_positions.append((match.start(), match.end(), word)) masked_text = re.sub(pattern, '[MASK]', masked_text, flags=re.IGNORECASE) return { 'original': stereotype, 'masked': masked_text, 'gender_words': gender_words, 'gender_positions': gender_positions } def create_gender_pairs(self, masked_data: Dict) -> Tuple[str, str]: """基于masked数据创建性别对比对""" if not masked_data: return None, None masked_text = masked_data['masked'] gender_words = masked_data['gender_words'] # 创建男性版本 male_text = masked_text female_text = masked_text for word in gender_words: if word in self.gender_processor.gender_pairs: opposite = self.gender_processor.get_gender_opposite(word) # 替换为对应性别 if word in ['men', 'man', 'he', 'him', 'his', 'male', 'father', 'son', 'brother']: # 这是男性词汇,保持male_text不变,female_text替换 male_text = male_text.replace('[MASK]', word, 1) female_text = female_text.replace('[MASK]', opposite, 1) else: # 这是女性词汇,保持female_text不变,male_text替换 female_text = female_text.replace('[MASK]', word, 1) male_text = male_text.replace('[MASK]', opposite, 1) return male_text, female_text class JobsConverter: """职业偏见转换器""" def __init__(self): self.gender_processor = GenderWordProcessor() def create_job_prompts(self, job_name: str) -> Dict: """为职业创建性别对比prompt""" base_template = f"这个{job_name}是" return { 'base': base_template, 'male': f"这个{job_name}是他", 'female': f"这个{job_name}是她", 'neutral': f"这个{job_name}是一个人", 'job': job_name } class DebiasDataLoader: """去偏见数据加载器""" def __init__(self): self.stereotype_converter = StereotypeConverter() self.jobs_converter = JobsConverter() def load_direct_probe_data(self) -> List[Dict]: """加载DirectProbe数据并转换""" from genderbench.probes.direct.direct_probe import DirectProbe probe = DirectProbe() items = probe._create_probe_items() converted_data = [] for item in items: if hasattr(item, 'prompts') and item.prompts: # 提取原始stereotype prompt_text = item.prompts[0].text # 从"Do you agree with the following statement? "XXX". Please answer..."中提取XXX match = re.search(r'"([^"]+)"', prompt_text) if match: stereotype = match.group(1) # 转换为masked格式 masked_data = self.stereotype_converter.convert_to_masked_format(stereotype) if masked_data: male_text, female_text = self.stereotype_converter.create_gender_pairs(masked_data) if male_text and female_text: converted_data.append({ 'type': 'stereotype', 'original': stereotype, 'masked': masked_data['masked'], 'male_version': male_text, 'female_version': female_text, 'source': item.metadata.get('source', 'unknown') }) return converted_data def load_jobs_probe_data(self) -> List[Dict]: """加载JobsProbe数据并转换""" try: from genderbench.probes.jobs_lum.jobs_lum_probe import JobsLumProbe probe = JobsLumProbe() items = probe._create_probe_items() converted_data = [] for item in items: if hasattr(item, 'prompts') and item.prompts: prompt_text = item.prompts[0].text # 从"I am writing a novel and I need a character who works as a/an XXX"中提取职业 match = re.search(r'works as a/an (.+?)\. Please', prompt_text) if match: job = match.group(1) job_prompts = self.jobs_converter.create_job_prompts(job) converted_data.append({ 'type': 'job', 'job': job, 'prompts': job_prompts }) return converted_data except Exception as e: print(f"加载Jobs数据失败: {e}") return [] def content_similarity_loss(text1: str, text2: str, tokenizer) -> torch.Tensor: """计算两个文本除性别词外的相似度损失""" processor = GenderWordProcessor() # 移除性别词汇 words1 = text1.split() words2 = text2.split() filtered_words1 = [word for word in words1 if word.lower() not in processor.gender_pairs and word.lower() not in processor.neutral_words] filtered_words2 = [word for word in words2 if word.lower() not in processor.gender_pairs and word.lower() not in processor.neutral_words] # 计算编辑距离或余弦相似度 # 这里简化为长度差异惩罚 length_diff = abs(len(filtered_words1) - len(filtered_words2)) # 计算词汇重叠度 set1, set2 = set(filtered_words1), set(filtered_words2) overlap = len(set1.intersection(set2)) total = len(set1.union(set2)) similarity = overlap / total if total > 0 else 0 consistency_loss = 1.0 - similarity + 0.1 * length_diff return torch.tensor(consistency_loss, dtype=torch.float32) def create_training_batch(converted_data: List[Dict], batch_size: int = 4) -> List[Dict]: """创建训练批次""" import random # 随机选择数据 selected = random.sample(converted_data, min(batch_size, len(converted_data))) batch = [] for item in selected: if item['type'] == 'stereotype': batch.append({ 'male_prompt': f"请对这个陈述表态: '{item['male_version']}'", 'female_prompt': f"请对这个陈述表态: '{item['female_version']}'", 'bias_type': 'stereotype' }) elif item['type'] == 'job': batch.append({ 'male_prompt': f"请描述:{item['prompts']['male']}", 'female_prompt': f"请描述:{item['prompts']['female']}", 'bias_type': 'occupation' }) return batch # 示例使用函数 def demonstrate_conversion(): """演示转换功能""" print("🔄 === 数据转换演示 ===") # 加载数据 loader = DebiasDataLoader() # 加载stereotype数据 stereotype_data = loader.load_direct_probe_data() print(f"📊 加载了 {len(stereotype_data)} 个stereotype") # 显示转换示例 print("\n🎯 转换示例:") for i, item in enumerate(stereotype_data[:3]): print(f" {i+1}. 原始: {item['original']}") print(f" 男性版本: {item['male_version']}") print(f" 女性版本: {item['female_version']}") print() # 加载职业数据 jobs_data = loader.load_jobs_probe_data() print(f"📊 加载了 {len(jobs_data)} 个职业") # 显示职业示例 print("\n💼 职业示例:") for i, item in enumerate(jobs_data[:3]): print(f" {i+1}. 职业: {item['job']}") print(f" 男性: {item['prompts']['male']}") print(f" 女性: {item['prompts']['female']}") print() if __name__ == "__main__": demonstrate_conversion()