# 定义基础变量 export VLLM_ENABLE_V1_MULTIPROCESSING=0 config="vllm" num_limit=100 max_token=3072 ntrain=0 split="test" log_path="log/test" # 创建日志目录 mkdir -p ${log_path} # Declare an associative array to store model mappings # TODO:Replace with actual model name and path declare -A model_dict=( ["model_name_1"]="/path/to/model1" ["model_name_2"]="/path/to/model2" ) # Outer Loop:遍历model_dict for exp_name in "${!model_dict[@]}"; do model="${model_dict[$exp_name]}" # Inner Loop:遍历不同的 eval_nppl 值 for eval_nppl in 2 3 4 5 6 7 8; do log_file="${log_path}/${exp_name}_nppl${eval_nppl}.log" # 日志文件名包含模型名称和 eval_nppl echo "Starting job for model: $model, eval_nppl: $eval_nppl, logging to $log_file" # 启动评估任务 CUDA_VISIBLE_DEVICES=1 PYTHONUNBUFFERED=1 python main_eval_instruct.py \ --batch_size 100 \ --model ${model} \ --max_token ${max_token} \ --ntrain ${ntrain} \ --config "${config}_${exp_name}_nppl${eval_nppl}" \ --limit ${num_limit} \ --split ${split} \ --temperature 0.0 \ --top_p 1.0 \ --seed 0 \ --problem_type "clean" \ --output_file "${log_path}/${exp_name}_nppl${eval_nppl}.json" \ --eval_nppl ${eval_nppl} > "$log_file" 2>&1 done done # 等待所有后台任务完成 wait