summaryrefslogtreecommitdiff
path: root/losses
diff options
context:
space:
mode:
Diffstat (limited to 'losses')
-rw-r--r--losses/gee_loss.py44
1 files changed, 30 insertions, 14 deletions
diff --git a/losses/gee_loss.py b/losses/gee_loss.py
index 2c21533..2605e22 100644
--- a/losses/gee_loss.py
+++ b/losses/gee_loss.py
@@ -22,7 +22,7 @@ class GEELoss:
def compute_sample_entropy(self, H_tok: torch.Tensor,
prompt_lengths: torch.Tensor) -> torch.Tensor:
- """计算样本平均熵"""
+ """计算样本平均熵 - 修复版本"""
batch_size = H_tok.size(0)
H_i = torch.zeros(batch_size, device=H_tok.device)
@@ -31,10 +31,14 @@ class GEELoss:
gen_start = prompt_lengths[i]
if gen_start < H_tok.size(1):
gen_entropy = H_tok[i, gen_start:]
- # 过滤掉padding token的熵
- valid_entropy = gen_entropy[gen_entropy != 0]
- if valid_entropy.numel() > 0:
- H_i[i] = valid_entropy.mean()
+
+ # 🔧 修复: 不要过滤熵值为0的token!
+ # 熵值为0是合理的(模型确定性高时)
+ # 只过滤掉真正的padding token(用attention_mask标记)
+ if gen_entropy.numel() > 0:
+ H_i[i] = gen_entropy.mean()
+ else:
+ H_i[i] = 0.0
return H_i
@@ -44,8 +48,21 @@ class GEELoss:
male_mask = (gender_labels == 0) # 假设0=male, 1=female
female_mask = (gender_labels == 1)
- H_male = H_i[male_mask].mean() if male_mask.sum() > 0 else torch.tensor(0.0, device=H_i.device)
- H_female = H_i[female_mask].mean() if female_mask.sum() > 0 else torch.tensor(0.0, device=H_i.device)
+ # 🔧 修复: 添加调试信息
+ male_count = male_mask.sum().item()
+ female_count = female_mask.sum().item()
+
+ if male_count == 0:
+ print(f"⚠️ 警告: 批次中没有男性样本")
+ H_male = torch.tensor(0.0, device=H_i.device)
+ else:
+ H_male = H_i[male_mask].mean()
+
+ if female_count == 0:
+ print(f"⚠️ 警告: 批次中没有女性样本")
+ H_female = torch.tensor(0.0, device=H_i.device)
+ else:
+ H_female = H_i[female_mask].mean()
return H_male, H_female
@@ -57,15 +74,13 @@ class GEELoss:
# 计算各组平均熵
H_male, H_female = self.compute_group_entropy(H_i, gender_labels)
- # 计算组间差异
+ # 🔧 修复: 改进组间差异计算
if self.use_l1:
# L1版本
- group_diff = torch.abs(H_female - H_male)
- loss_bias = group_diff
+ loss_bias = torch.abs(H_female - H_male)
else:
- # L2版本
- H_bar_group = (H_male + H_female) / 2
- loss_bias = (H_male - H_bar_group) ** 2 + (H_female - H_bar_group) ** 2
+ # L2版本 - 简化计算
+ loss_bias = (H_female - H_male) ** 2
# 总损失
loss_em = H_bar
@@ -79,7 +94,8 @@ class GEELoss:
'H_bar': H_bar.item(),
'H_male': H_male.item(),
'H_female': H_female.item(),
- 'entropy_gap': abs(H_female - H_male).item()
+ 'entropy_gap': abs(H_female - H_male).item(),
+ 'lambda_weight': self.lambda_weight
}
return loss_total, metrics