summaryrefslogtreecommitdiff
path: root/train_gee_smart.py
diff options
context:
space:
mode:
Diffstat (limited to 'train_gee_smart.py')
-rw-r--r--train_gee_smart.py279
1 files changed, 279 insertions, 0 deletions
diff --git a/train_gee_smart.py b/train_gee_smart.py
new file mode 100644
index 0000000..d368762
--- /dev/null
+++ b/train_gee_smart.py
@@ -0,0 +1,279 @@
+#!/usr/bin/env python3
+"""
+GEE训练脚本 - 使用智能平衡数据加载器
+绝对保证每个批次都包含男女样本
+"""
+import argparse
+import os
+import torch
+import torch.nn.functional as F
+from torch.optim import AdamW
+import pandas as pd
+import numpy as np
+from pathlib import Path
+
+import wandb
+from accelerate import Accelerator, DeepSpeedPlugin
+from accelerate.utils import set_seed
+from transformers import AutoConfig, AutoTokenizer, AutoModelForCausalLM
+
+# 导入自定义模块
+import sys
+sys.path.append('.')
+from dataset.gee_processor import GEEProcessor
+from losses.gee_loss import GEELoss, gender_to_label
+from smart_balanced_dataloader import create_smart_balanced_dataloader
+
+os.environ.setdefault("NCCL_TIMEOUT", "2700")
+os.environ.setdefault("TORCH_NCCL_HEARTBEAT_TIMEOUT_SEC", "2700")
+
+def parse_args():
+ parser = argparse.ArgumentParser()
+ # GEE相关参数
+ parser.add_argument('--lambda_weight', type=float, default=0.5, help='GEE lambda weight')
+ parser.add_argument('--use_l1', action='store_true', help='Use L1 loss instead of L2')
+ parser.add_argument('--auto_anneal', action='store_true', help='Use automatic annealing')
+
+ # 模型参数
+ parser.add_argument('--model_name', type=str, default='Qwen2.5-Math-1.5B-Instruct', help='Model name')
+ parser.add_argument('--model_path', type=str, required=True, help='Model path')
+ parser.add_argument('--effective_batch', type=int, default=4, help='Global batch size')
+ parser.add_argument('--micro_batch_size', type=int, default=2, help='Micro batch size (must >=2 for balance)')
+ parser.add_argument('--learning_rate', type=float, default=2e-5, help='Learning rate')
+ parser.add_argument('--max_steps', type=int, default=10, help='Maximum training steps')
+ parser.add_argument('--sample_temp', type=float, default=0.7, help='Generation temperature')
+
+ # 运行参数
+ parser.add_argument('--run_name', type=str, default='gee_smart_balanced', help='Run name')
+ parser.add_argument('--wandb_project', type=str, default='one-shot-gee', help='W&B project name')
+ parser.add_argument('--use_test_data', action='store_true', help='Use synthetic test data')
+ parser.add_argument('--seed', type=int, default=42, help='Random seed')
+ parser.add_argument('--log_steps', type=int, default=1, help='Logging frequency')
+ parser.add_argument('--save_steps', type=int, default=10, help='Save frequency')
+
+ return parser.parse_args()
+
+def main():
+ args = parse_args()
+ set_seed(args.seed)
+
+ # 强制检查batch_size
+ if args.micro_batch_size < 2:
+ print("❌ 错误: micro_batch_size必须>=2才能保证性别平衡!")
+ print("请使用: --micro_batch_size 2 或更大")
+ return
+
+ # DeepSpeed配置
+ ds_config = {
+ "train_micro_batch_size_per_gpu": args.micro_batch_size,
+ "train_batch_size": args.effective_batch,
+ "gradient_accumulation_steps": max(1, args.effective_batch // args.micro_batch_size),
+ "bf16": {"enabled": True},
+ "zero_optimization": {
+ "stage": 2,
+ "offload_optimizer": {"device": "cpu"},
+ "offload_param": {"device": "none"}
+ },
+ "gradient_clipping": 1.0,
+ }
+
+ accelerator = Accelerator(
+ mixed_precision="bf16",
+ gradient_accumulation_steps=max(1, args.effective_batch // args.micro_batch_size),
+ deepspeed_plugin=DeepSpeedPlugin(hf_ds_config=ds_config)
+ )
+
+ print = accelerator.print
+ print(f"🧠 开始智能GEE训练 - {args.run_name}")
+ print(f"📊 配置信息:")
+ print(f" 批次大小: micro={args.micro_batch_size}, effective={args.effective_batch}")
+ print(f" Lambda权重: {args.lambda_weight}")
+ print(f" 最大步数: {args.max_steps}")
+ print(f" 智能平衡: ✅ 启用")
+
+ # 加载模型
+ model_path = args.model_path
+ config = AutoConfig.from_pretrained(model_path, trust_remote_code=True)
+ config.use_cache = False
+ model = AutoModelForCausalLM.from_pretrained(model_path, config=config, trust_remote_code=True)
+ model.gradient_checkpointing_enable()
+
+ tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
+ if tokenizer.pad_token is None:
+ tokenizer.pad_token = tokenizer.eos_token
+
+ # 初始化GEE处理器和损失函数
+ gee_processor = GEEProcessor(tokenizer)
+ gee_loss_fn = GEELoss(lambda_weight=args.lambda_weight, use_l1=args.use_l1)
+
+ if accelerator.is_main_process:
+ wandb.init(project=args.wandb_project, name=args.run_name, config=vars(args))
+
+ # 准备数据 - 使用智能平衡数据加载器
+ if args.use_test_data:
+ print("📊 使用合成测试数据...")
+ train_data = gee_processor.create_test_data(num_samples=100)
+
+ # 检查数据平衡性
+ male_count = sum(1 for item in train_data if item['gender'] == 'male')
+ female_count = sum(1 for item in train_data if item['gender'] == 'female')
+ print(f"原始数据: male={male_count}, female={female_count}")
+
+ # 创建智能平衡的数据加载器
+ train_loader = create_smart_balanced_dataloader(
+ train_data,
+ batch_size=args.micro_batch_size,
+ num_batches=args.max_steps + 5 # 额外的批次确保有足够数据
+ )
+ else:
+ print("❌ 请使用 --use_test_data 进行测试")
+ return
+
+ optimizer = AdamW(model.parameters(), lr=args.learning_rate)
+
+ # 注意:智能数据加载器不需要accelerator.prepare处理
+ model, optimizer = accelerator.prepare(model, optimizer)
+
+ print(f"🎯 开始训练...")
+ print(f" 期望看到: 每个批次都显示 '✅ 平衡批次'")
+ print(f" 不应该看到: '❌ 警告: 批次中没有男性/女性样本'")
+
+ # 开始训练
+ model.train()
+ initial_entropy_gap = None
+ successful_steps = 0
+ failed_steps = 0
+
+ for step, batch in enumerate(train_loader, start=1):
+ if step > args.max_steps:
+ print(f"🛑 达到最大步数 {args.max_steps},训练结束")
+ break
+
+ with accelerator.accumulate(model):
+ try:
+ # 验证批次平衡性
+ male_count = sum(1 for g in batch["gender"] if g == 'male')
+ female_count = sum(1 for g in batch["gender"] if g == 'female')
+
+ if male_count == 0 or female_count == 0:
+ print(f"💥 Step {step}: 智能加载器失败!male={male_count}, female={female_count}")
+ failed_steps += 1
+ continue
+ else:
+ successful_steps += 1
+
+ # 准备输入
+ inputs = tokenizer(
+ batch["input"],
+ return_tensors="pt",
+ padding="longest",
+ truncation=True,
+ max_length=1024
+ ).to(accelerator.device)
+
+ # 生成回答
+ with torch.no_grad():
+ gen_ids = accelerator.unwrap_model(model).generate(
+ **inputs,
+ max_new_tokens=128,
+ do_sample=True,
+ top_p=0.95,
+ temperature=args.sample_temp,
+ synced_gpus=True,
+ repetition_penalty=1.15,
+ pad_token_id=tokenizer.pad_token_id,
+ use_cache=False
+ )
+
+ # 准备完整序列
+ seq = torch.cat([inputs.input_ids, gen_ids[:, inputs.input_ids.shape[1]:]], dim=1)
+ pad_mask = seq.ne(tokenizer.pad_token_id)
+ prompt_lengths = pad_mask[:, :inputs.input_ids.shape[1]].sum(-1)
+
+ # 计算logits和熵
+ logits = model(seq, attention_mask=pad_mask).logits
+ H_tok = gee_loss_fn.compute_token_entropy(logits, pad_mask)
+ H_i = gee_loss_fn.compute_sample_entropy(H_tok, prompt_lengths)
+
+ # 准备性别标签
+ gender_labels = torch.tensor([
+ gender_to_label(g) for g in batch["gender"]
+ ], device=accelerator.device)
+
+ # 计算GEE损失
+ loss, metrics = gee_loss_fn.compute_gee_loss(H_i, gender_labels)
+
+ # 自动退火(可选)
+ if args.auto_anneal and initial_entropy_gap is None:
+ initial_entropy_gap = metrics['entropy_gap']
+
+ if args.auto_anneal and initial_entropy_gap > 0:
+ current_gap = metrics['entropy_gap']
+ anneal_factor = current_gap / initial_entropy_gap
+ new_lambda = args.lambda_weight * anneal_factor
+ gee_loss_fn.update_lambda(new_lambda)
+ metrics['lambda_weight'] = new_lambda
+
+ # 反向传播
+ accelerator.backward(loss)
+ accelerator.clip_grad_norm_(model.parameters(), 1.0)
+ optimizer.step()
+ optimizer.zero_grad()
+
+ # 日志记录
+ if accelerator.is_main_process:
+ if step % args.log_steps == 0:
+ print(f"🎯 Step {step} | loss={loss.item():.6f} | "
+ f"gap={metrics['entropy_gap']:.6f} | "
+ f"H_male={metrics['H_male']:.6f} | "
+ f"H_female={metrics['H_female']:.6f} | "
+ f"批次[{male_count}M,{female_count}F]")
+
+ # 添加成功率统计
+ success_rate = successful_steps / (successful_steps + failed_steps) * 100
+ metrics['success_rate'] = success_rate
+
+ wandb.log({"step": step, **metrics})
+
+ # 保存检查点
+ if accelerator.is_main_process and step % args.save_steps == 0:
+ ckpt = Path(f"checkpoints/{args.model_name}/{args.run_name}") / f"step_{step}"
+ ckpt.mkdir(parents=True, exist_ok=True)
+ accelerator.unwrap_model(model).save_pretrained(ckpt, safe_serialization=True)
+ tokenizer.save_pretrained(ckpt)
+ print(f"💾 检查点已保存: {ckpt}")
+
+ except Exception as e:
+ print(f"❌ 训练步骤 {step} 出错: {e}")
+ failed_steps += 1
+ continue
+
+ if accelerator.is_main_process:
+ # 最终统计
+ total_steps = successful_steps + failed_steps
+ success_rate = successful_steps / total_steps * 100 if total_steps > 0 else 0
+
+ print(f"\n🎉 智能GEE训练完成!")
+ print(f"📊 最终统计:")
+ print(f" 成功步数: {successful_steps}")
+ print(f" 失败步数: {failed_steps}")
+ print(f" 成功率: {success_rate:.1f}%")
+
+ if success_rate >= 95:
+ print("✅ 智能平衡数据加载器工作完美!")
+ elif success_rate >= 80:
+ print("⚠️ 智能平衡数据加载器基本正常,偶有问题")
+ else:
+ print("❌ 智能平衡数据加载器需要进一步优化")
+
+ # 保存最终模型
+ final = Path(f"checkpoints/{args.model_name}/{args.run_name}") / "final"
+ final.mkdir(parents=True, exist_ok=True)
+ accelerator.unwrap_model(model).save_pretrained(final, safe_serialization=True)
+ tokenizer.save_pretrained(final)
+ print(f"💾 最终模型已保存: {final}")
+
+ wandb.finish()
+
+if __name__ == "__main__":
+ main() \ No newline at end of file