#!/usr/bin/env python3 """ 平衡的数据加载器 - 确保每个批次包含男女样本 """ import torch from torch.utils.data import Dataset, DataLoader import random from typing import List, Dict class BalancedGEEDataset(Dataset): def __init__(self, data: List[Dict]): self.data = data # 按性别分组 self.male_data = [item for item in data if item['gender'] == 'male'] self.female_data = [item for item in data if item['gender'] == 'female'] print(f"📊 数据分布: male={len(self.male_data)}, female={len(self.female_data)}") # 确保有足够的数据 if len(self.male_data) == 0 or len(self.female_data) == 0: raise ValueError("数据中必须包含男性和女性样本") def __len__(self): return len(self.data) def __getitem__(self, idx): return self.data[idx] def create_balanced_batches(self, batch_size: int, num_batches: int = None): """创建平衡的批次""" if batch_size < 2: raise ValueError("batch_size必须>=2才能保证性别平衡") # 每个批次中男女样本的数量 male_per_batch = batch_size // 2 female_per_batch = batch_size - male_per_batch batches = [] max_batches = num_batches or (len(self.data) // batch_size) for i in range(max_batches): batch = [] # 随机选择男性样本 male_samples = random.sample(self.male_data, min(male_per_batch, len(self.male_data))) batch.extend(male_samples) # 随机选择女性样本 female_samples = random.sample(self.female_data, min(female_per_batch, len(self.female_data))) batch.extend(female_samples) # 打乱批次内的顺序 random.shuffle(batch) batches.append(batch) print(f"批次 {i+1}: male={len(male_samples)}, female={len(female_samples)}") return batches def balanced_collate(batch): """平衡的collate函数""" inputs = [item["input"] for item in batch] genders = [item["gender"] for item in batch] # 检查批次平衡性 male_count = sum(1 for g in genders if g == 'male') female_count = sum(1 for g in genders if g == 'female') print(f"🔍 批次检查: male={male_count}, female={female_count}") if male_count == 0: print("⚠️ 警告: 批次中没有男性样本!") if female_count == 0: print("⚠️ 警告: 批次中没有女性样本!") return { "input": inputs, "gender": genders } def create_balanced_dataloader(data: List[Dict], batch_size: int, num_batches: int = 10): """创建平衡的数据加载器""" dataset = BalancedGEEDataset(data) if batch_size < 2: print("⚠️ 警告: batch_size < 2,无法保证性别平衡") return DataLoader(dataset, batch_size=batch_size, shuffle=True, collate_fn=balanced_collate) # 创建平衡批次 balanced_batches = dataset.create_balanced_batches(batch_size, num_batches) # 展平批次为单个数据点 flat_data = [] for batch in balanced_batches: flat_data.extend(batch) # 创建新的数据集 balanced_dataset = BalancedGEEDataset(flat_data) return DataLoader(balanced_dataset, batch_size=batch_size, shuffle=False, collate_fn=balanced_collate) # 测试函数 if __name__ == "__main__": # 测试平衡数据加载器 import sys sys.path.append('.') from dataset.gee_processor import GEEProcessor class MockTokenizer: def apply_chat_template(self, messages, tokenize=False, add_generation_prompt=True): return messages[0]["content"] processor = GEEProcessor(MockTokenizer()) test_data = processor.create_test_data(num_samples=20) print("🧪 测试平衡数据加载器") dataloader = create_balanced_dataloader(test_data, batch_size=4, num_batches=3) for i, batch in enumerate(dataloader): print(f"\n批次 {i+1}:") print(f" 输入数量: {len(batch['input'])}") print(f" 性别: {batch['gender']}") if i >= 2: # 只测试前3个批次 break