### Qwen2.5-0.5B Full SFT Config model_name_or_path: Qwen/Qwen2.5-0.5B-Instruct stage: sft do_train: true finetuning_type: full freeze_trainable_layers: 0 dataset: preference_extractor_train template: qwen cutoff_len: 1024 overwrite_cache: true preprocessing_num_workers: 16 output_dir: saves/qwen2.5-0.5b-full-sft logging_steps: 10 save_strategy: steps save_steps: 500 plot_loss: true overwrite_output_dir: true per_device_train_batch_size: 16 gradient_accumulation_steps: 8 learning_rate: 2.0e-5 num_train_epochs: 1.0 lr_scheduler_type: cosine warmup_ratio: 0.05 bf16: true flash_attn: fa2 val_size: 0.01 per_device_eval_batch_size: 16 eval_strategy: steps eval_steps: 500