#!/usr/bin/env python3 """ Pilot Runner v4 - Critical Fixes for Baseline Comparison Fixes from v3: 1. Chinese short reveal detection (简短/字以内/不超过 etc.) 2. Symmetric bullets constraint (has_bullets violation for require_bullets=False) 3. Better wrong_lang with CJK ratio + math exemption 4. Persona-conditional query templates (no self-contradiction) 5. Violation-triggered complaint mechanism (for online RL signal) This version is ready for proper baseline comparison. """ import sys import os import re import json from datetime import datetime from dataclasses import dataclass, asdict, field from typing import List, Dict, Any, Optional, Tuple, Set, Literal # Add src to path sys.path.insert(0, os.path.join(os.path.dirname(__file__), "../src")) from personalization.serving import PersonalizedLLM, Feedback, AssistantResponse # ============================================================================= # Style Preferences (True Preferences) # ============================================================================= @dataclass class StylePrefs: """User's TRUE style preferences.""" require_short: bool = False max_chars: int = 300 require_bullets: bool = False # True = want bullets, False = don't want bullets lang: str = "en" # "en" or "zh" # ============================================================================= # Persona Definition # ============================================================================= @dataclass class Persona: """A user persona that bundles style preferences.""" persona_id: str style_prefs: StylePrefs description: str = "" # 5 Test Personas PERSONA_A = Persona( persona_id="A_short_bullets_en", style_prefs=StylePrefs(require_short=True, max_chars=200, require_bullets=True, lang="en"), description="Short + bullets + English", ) PERSONA_B = Persona( persona_id="B_short_no_bullets_en", style_prefs=StylePrefs(require_short=True, max_chars=200, require_bullets=False, lang="en"), description="Short + NO bullets + English (anti-bullet)", ) PERSONA_C = Persona( persona_id="C_long_bullets_en", style_prefs=StylePrefs(require_short=False, max_chars=800, require_bullets=True, lang="en"), description="Long + bullets + English", ) PERSONA_D = Persona( persona_id="D_short_bullets_zh", style_prefs=StylePrefs(require_short=True, max_chars=200, require_bullets=True, lang="zh"), description="Short + bullets + Chinese", ) PERSONA_E = Persona( persona_id="E_long_no_bullets_zh", style_prefs=StylePrefs(require_short=False, max_chars=800, require_bullets=False, lang="zh"), description="Long + NO bullets + Chinese (most anti-default)", ) # Extreme short persona for case study - LLM default is much longer PERSONA_F = Persona( persona_id="F_extreme_short_en", style_prefs=StylePrefs(require_short=True, max_chars=100, require_bullets=True, lang="en"), description="EXTREME short (100 chars) + bullets + English", ) ALL_PERSONAS = [PERSONA_A, PERSONA_B, PERSONA_C, PERSONA_D, PERSONA_E, PERSONA_F] # ============================================================================= # Reveal State # ============================================================================= @dataclass class RevealState: """Tracks which preferences have been explicitly revealed.""" short_revealed: bool = False bullets_revealed: bool = False lang_revealed: bool = False def reset(self): self.short_revealed = False self.bullets_revealed = False self.lang_revealed = False def to_dict(self) -> Dict[str, bool]: return {"short": self.short_revealed, "bullets": self.bullets_revealed, "lang": self.lang_revealed} def __str__(self) -> str: flags = [k for k, v in self.to_dict().items() if v] return f"RevealState({', '.join(flags) if flags else 'none'})" class RevealStateManager: """Manages reveal state for multiple users.""" def __init__(self): self._states: Dict[str, RevealState] = {} def get_state(self, user_id: str) -> RevealState: if user_id not in self._states: self._states[user_id] = RevealState() return self._states[user_id] def reset_user(self, user_id: str): self._states[user_id] = RevealState() def reset_session(self, user_id: str): pass # Reveal state persists # ============================================================================= # FIX 1: Improved Preference Detection (with Chinese support) # ============================================================================= def detect_revealed_preferences(query: str, prefs: StylePrefs) -> Dict[str, bool]: """ Detect which preferences are mentioned in a query. FIX: Added Chinese keywords for short detection. """ lower_q = (query or "").lower() original_q = query or "" revealed = {"short": False, "bullets": False, "lang": False} # Short/length preference - English patterns short_patterns_en = [ "short", "concise", "brief", "under ", "less than", "keep it short", "keep responses", "keep answers", "maximum ", "max ", "characters", "words or less", ] # FIX: Chinese patterns for short preference short_patterns_zh = [ "简短", "精简", "尽量短", "不要太长", "字以内", "不超过", "少于", "控制在", "简洁", "简明", ] # Regex patterns for number-based length constraints short_regex_patterns = [ r"(\d+)\s*字以内", # "200字以内" r"不超过\s*(\d+)\s*字", # "不超过200字" r"under\s*(\d+)", # "under 200" r"less\s*than\s*(\d+)", # "less than 200" ] for pattern in short_patterns_en: if pattern in lower_q: revealed["short"] = True break if not revealed["short"]: for pattern in short_patterns_zh: if pattern in original_q: revealed["short"] = True break if not revealed["short"]: for regex in short_regex_patterns: if re.search(regex, original_q, re.IGNORECASE): revealed["short"] = True break # Bullet preference - both positive and negative bullet_patterns_positive = [ "bullet", "bullet point", "bullet-point", "bulleted", "list format", "use bullets", "use bullet", "项目符号", "要点", "用bullet", ] bullet_patterns_negative = [ "no bullet", "don't use bullet", "without bullet", "不要bullet", "不要项目符号", "不用bullet", "continuous prose", "paragraph form", "flowing text", "连续句子", "段落形式", ] for pattern in bullet_patterns_positive + bullet_patterns_negative: if pattern in lower_q or pattern in original_q: revealed["bullets"] = True break # Language preference lang_patterns_zh = [ "chinese", "中文", "in chinese", "用中文", "speak chinese", "respond in chinese", "请用中文", ] lang_patterns_en = [ "english", "in english", "use english", "speak english", "respond in english", ] for pattern in lang_patterns_zh + lang_patterns_en: if pattern in lower_q or pattern in original_q: revealed["lang"] = True break return revealed def update_reveal_state(reveal_state: RevealState, query: str, prefs: StylePrefs) -> Set[str]: """Update reveal state based on query content.""" detected = detect_revealed_preferences(query, prefs) newly_revealed = set() if detected["short"] and not reveal_state.short_revealed: reveal_state.short_revealed = True newly_revealed.add("short") if detected["bullets"] and not reveal_state.bullets_revealed: reveal_state.bullets_revealed = True newly_revealed.add("bullets") if detected["lang"] and not reveal_state.lang_revealed: reveal_state.lang_revealed = True newly_revealed.add("lang") return newly_revealed # ============================================================================= # FIX 3: Better Language Detection # ============================================================================= def is_math_or_symbol_only(text: str) -> bool: """Check if text is purely math/symbols (language neutral).""" # Pattern: only digits, operators, whitespace, punctuation math_pattern = r'^[\d+\-*/=().,%\s\n\r]+$' return bool(re.match(math_pattern, text.strip())) def count_cjk_chars(text: str) -> int: """Count CJK (Chinese/Japanese/Korean) characters.""" # CJK Unified Ideographs range cjk_pattern = re.compile(r'[\u4e00-\u9fff\u3400-\u4dbf]') return len(cjk_pattern.findall(text)) def count_latin_letters(text: str) -> int: """Count Latin letters (a-z, A-Z).""" return sum(1 for c in text if c.isalpha() and c.isascii()) def check_language_violation(text: str, target_lang: str) -> bool: """ FIX: Better language violation check using CJK ratio. Returns True if there's a violation. """ text = text.strip() # Exempt pure math/symbols if is_math_or_symbol_only(text): return False cjk_count = count_cjk_chars(text) latin_count = count_latin_letters(text) total = cjk_count + latin_count if total == 0: return False # No meaningful text to judge if target_lang == "zh": # For Chinese: want high CJK ratio cjk_ratio = cjk_count / (total + 1e-9) # Allow some English proper nouns - only flag if very low CJK return cjk_ratio < 0.2 # Less than 20% CJK = wrong language elif target_lang == "en": # For English: want high Latin ratio latin_ratio = latin_count / (total + 1e-9) return latin_ratio < 0.5 # Less than 50% Latin = wrong language return False # ============================================================================= # FIX 2: Symmetric Bullets Constraint + FIX 3: Language # ============================================================================= @dataclass class JudgeResult: """Output from the judge for one turn.""" sat_t: float sev_t: float prog_t: float violations: List[str] enforced_constraints: List[str] def has_bullet_markers(text: str) -> bool: """Check if text contains bullet point markers.""" return bool(re.search(r'(^|\n)\s*[-•*]\s', text)) def style_judge_v4( query: str, answer: str, task_type: str, prefs: StylePrefs, reveal_state: RevealState, ) -> JudgeResult: """ Style judge v4 with: - FIX 2: Symmetric bullets (has_bullets violation for require_bullets=False) - FIX 3: Better wrong_lang with CJK ratio + math exemption """ violations: List[str] = [] enforced: List[str] = [] text = (answer or "").strip() # 0) Empty answer if len(text) == 0: violations.append("empty_answer") return JudgeResult(sat_t=0.0, sev_t=1.0, prog_t=0.0, violations=violations, enforced_constraints=["non_empty"]) # 1) Length - enforce only if true AND revealed if prefs.require_short and reveal_state.short_revealed: enforced.append("short") if len(text) > prefs.max_chars: violations.append("too_long") # 2) FIX 2: Symmetric bullets constraint (only for list tasks) if reveal_state.bullets_revealed and task_type == "list": has_bullets = has_bullet_markers(text) if prefs.require_bullets: # Want bullets but don't have them enforced.append("require_bullets") if not has_bullets: violations.append("no_bullets") else: # Don't want bullets but have them enforced.append("no_bullets_pref") if has_bullets: violations.append("has_bullets") # 3) FIX 3: Language with CJK ratio + math exemption if reveal_state.lang_revealed: enforced.append("lang") if check_language_violation(text, prefs.lang): violations.append("wrong_lang") # 4) Code task prog_t = 1.0 if task_type == "code": enforced.append("code_block") has_code = ("```" in text) or ("def " in text) or ("function " in text) if not has_code: violations.append("no_code_block") prog_t = 0.0 # 5) Compute scores if not violations: sat_t = 1.0 sev_t = 0.0 else: sat_t = max(0.0, 1.0 - 0.3 * float(len(violations))) hard_violations = {"empty_answer", "too_long", "wrong_lang"} sev_t = 1.0 if any(v in hard_violations for v in violations) else 0.0 return JudgeResult(sat_t=sat_t, sev_t=sev_t, prog_t=prog_t, violations=violations, enforced_constraints=enforced) # ============================================================================= # Feedback Computation # ============================================================================= def compute_feedback_for_turn( query: str, query_type: str, judge_result: JudgeResult, ) -> Tuple[float, float]: """Convert JudgeResult into (reward, gating).""" reward = judge_result.sat_t lower_q = (query or "").lower() original_q = query or "" is_pref_turn = ( query_type == "preference" or "i prefer" in lower_q or "my preference" in lower_q or "please use" in lower_q or "please keep" in lower_q or "you didn't follow" in lower_q or "you forgot" in lower_q or "remember that i" in lower_q or "i told you" in lower_q or "i asked for" in lower_q or "that was too" in lower_q or "too long" in lower_q or "请用中文" in original_q or "不要" in original_q or "简短" in original_q ) gating = 1.0 if is_pref_turn else 0.0 return reward, gating # ============================================================================= # FIX 5: Violation-Triggered Complaint Generation # ============================================================================= def generate_complaint_query(violations: List[str], prefs: StylePrefs) -> Optional[Dict[str, Any]]: """ Generate a complaint query based on violations. Returns None if no complaint needed. """ if not violations: return None # Priority: address most severe violation first complaint = None if "too_long" in violations: if prefs.lang == "zh": complaint = { "query": f"回答太长了。请保持回复在{prefs.max_chars}字以内。", "type": "preference", "task_type": "general", } else: complaint = { "query": f"That was too long. Please keep responses under {prefs.max_chars} characters.", "type": "preference", "task_type": "general", } elif "wrong_lang" in violations: if prefs.lang == "zh": complaint = { "query": "请用中文回答。", "type": "preference", "task_type": "general", } else: complaint = { "query": "Please respond in English.", "type": "preference", "task_type": "general", } elif "no_bullets" in violations: if prefs.lang == "zh": complaint = { "query": "请在列出内容时使用项目符号(bullet points)。", "type": "preference", "task_type": "general", } else: complaint = { "query": "Please use bullet points when listing things.", "type": "preference", "task_type": "general", } elif "has_bullets" in violations: if prefs.lang == "zh": complaint = { "query": "请不要使用项目符号,用连续的句子来表达。", "type": "preference", "task_type": "general", } else: complaint = { "query": "Please don't use bullet points. Use continuous prose instead.", "type": "preference", "task_type": "general", } return complaint # ============================================================================= # FIX 4: Persona-Conditional Query Templates # ============================================================================= def get_session_1_queries_for_persona(persona: Persona) -> List[Dict[str, Any]]: """ Session 1: Reveal preferences (persona-conditional). FIX: Only reveal preferences that match the persona's true prefs. """ queries = [] prefs = persona.style_prefs # Turn 0: Reveal length preference (only if require_short=True) if prefs.require_short: if prefs.lang == "zh": queries.append({ "query": f"我喜欢简短的回答,请保持回复在{prefs.max_chars}字以内。", "type": "preference", "task_type": "general", }) else: queries.append({ "query": f"I prefer short, concise answers. Please keep responses under {prefs.max_chars} characters.", "type": "preference", "task_type": "general", }) else: # Don't reveal short preference for long-preferring personas if prefs.lang == "zh": queries.append({ "query": "你好,我有一些问题想问你。", "type": "task", "task_type": "general", }) else: queries.append({ "query": "Hello, I have some questions for you.", "type": "task", "task_type": "general", }) # Turn 1: First task if prefs.lang == "zh": queries.append({"query": "列出三个改善睡眠的建议。", "type": "task", "task_type": "list"}) else: queries.append({"query": "List three tips for better sleep.", "type": "task", "task_type": "list"}) # Turn 2: Reveal bullet preference (conditional on require_bullets) if prefs.require_bullets: if prefs.lang == "zh": queries.append({ "query": "我喜欢用项目符号列出要点,请使用bullet points。", "type": "preference", "task_type": "general", }) else: queries.append({ "query": "I prefer bullet points when listing things. Please use bullet points.", "type": "preference", "task_type": "general", }) else: # Explicitly say NO bullets if prefs.lang == "zh": queries.append({ "query": "请不要用项目符号,我更喜欢连续的句子来表达。", "type": "preference", "task_type": "general", }) else: queries.append({ "query": "Please don't use bullet points. I prefer continuous prose.", "type": "preference", "task_type": "general", }) # Turn 3: Reveal language preference if prefs.lang == "zh": queries.append({"query": "请用中文回答我的问题。", "type": "preference", "task_type": "general"}) else: queries.append({"query": "Please respond in English.", "type": "preference", "task_type": "general"}) # Turn 4-5: Tasks if prefs.lang == "zh": queries.extend([ {"query": "锻炼有什么好处?", "type": "task", "task_type": "list"}, {"query": "列出五种流行的编程语言。", "type": "task", "task_type": "list"}, ]) else: queries.extend([ {"query": "What are the benefits of exercise?", "type": "task", "task_type": "list"}, {"query": "Name five popular programming languages.", "type": "task", "task_type": "list"}, ]) return queries def get_session_2_queries_for_persona(persona: Persona) -> List[Dict[str, Any]]: """Session 2: NO preference restatement.""" prefs = persona.style_prefs if prefs.lang == "zh": return [ {"query": "推荐三种健康的早餐。", "type": "task", "task_type": "list"}, {"query": "一年有哪四个季节?", "type": "task", "task_type": "list"}, {"query": "法国的首都是哪里?", "type": "task", "task_type": "qa"}, {"query": "列出三种可再生能源。", "type": "task", "task_type": "list"}, ] else: return [ {"query": "What are three healthy breakfast ideas?", "type": "task", "task_type": "list"}, {"query": "What are the four seasons of the year?", "type": "task", "task_type": "list"}, {"query": "What is the capital of France?", "type": "task", "task_type": "qa"}, {"query": "Name three types of renewable energy.", "type": "task", "task_type": "list"}, ] def get_session_3_queries_for_persona(persona: Persona) -> List[Dict[str, Any]]: """ Session 3: Tasks with ONE persona-conditional reminder. FIX: Reminder matches persona's actual preferences. """ prefs = persona.style_prefs queries = [] # First task if prefs.lang == "zh": queries.append({"query": "列出五种常见的水果。", "type": "task", "task_type": "list"}) else: queries.append({"query": "Name five common fruits.", "type": "task", "task_type": "list"}) # Persona-conditional reminder if prefs.require_short and prefs.require_bullets: if prefs.lang == "zh": queries.append({ "query": "记住我喜欢简短的回答和项目符号。列出三种海洋动物。", "type": "preference", "task_type": "list" }) else: queries.append({ "query": "Remember I prefer short answers with bullet points. List three ocean animals.", "type": "preference", "task_type": "list" }) elif prefs.require_short and not prefs.require_bullets: if prefs.lang == "zh": queries.append({ "query": "记住我喜欢简短的回答,不要用项目符号。列出三种海洋动物。", "type": "preference", "task_type": "list" }) else: queries.append({ "query": "Remember I prefer short answers without bullet points. List three ocean animals.", "type": "preference", "task_type": "list" }) elif not prefs.require_short and prefs.require_bullets: if prefs.lang == "zh": queries.append({ "query": "记住我喜欢用项目符号列出要点。列出三种海洋动物。", "type": "preference", "task_type": "list" }) else: queries.append({ "query": "Remember I prefer bullet points. List three ocean animals.", "type": "preference", "task_type": "list" }) else: # not short and not bullets if prefs.lang == "zh": queries.append({ "query": "记住我不喜欢用项目符号,喜欢连续的句子。列出三种海洋动物。", "type": "preference", "task_type": "list" }) else: queries.append({ "query": "Remember I prefer continuous prose without bullet points. List three ocean animals.", "type": "preference", "task_type": "list" }) # Final task if prefs.lang == "zh": queries.append({"query": "2加2等于多少?", "type": "task", "task_type": "qa"}) else: queries.append({"query": "What is 2 + 2?", "type": "task", "task_type": "qa"}) return queries def get_pure_task_queries_for_persona(persona: Persona, session_idx: int) -> List[Dict[str, Any]]: """ Pure task sessions (S4+): NO preference reminders at all. Used for testing long-term retention without any in-context hints. Different task sets per session to avoid repetition. """ prefs = persona.style_prefs # Task pools for variety zh_task_pools = [ # Pool 1 [ {"query": "列出三种热带水果。", "type": "task", "task_type": "list"}, {"query": "列出三种常见的编程语言。", "type": "task", "task_type": "list"}, {"query": "什么是光合作用?", "type": "task", "task_type": "qa"}, {"query": "太阳系有几颗行星?", "type": "task", "task_type": "qa"}, ], # Pool 2 [ {"query": "列出三种室内植物。", "type": "task", "task_type": "list"}, {"query": "列出三种运动项目。", "type": "task", "task_type": "list"}, {"query": "什么是人工智能?", "type": "task", "task_type": "qa"}, {"query": "地球的自转周期是多少?", "type": "task", "task_type": "qa"}, ], # Pool 3 [ {"query": "列出三种乐器。", "type": "task", "task_type": "list"}, {"query": "列出三种社交媒体平台。", "type": "task", "task_type": "list"}, {"query": "什么是区块链?", "type": "task", "task_type": "qa"}, {"query": "月球绕地球一周需要多长时间?", "type": "task", "task_type": "qa"}, ], # Pool 4 [ {"query": "列出三种鸟类。", "type": "task", "task_type": "list"}, {"query": "列出三种数据库系统。", "type": "task", "task_type": "list"}, {"query": "什么是机器学习?", "type": "task", "task_type": "qa"}, {"query": "水的沸点是多少?", "type": "task", "task_type": "qa"}, ], ] en_task_pools = [ # Pool 1 [ {"query": "List three tropical fruits.", "type": "task", "task_type": "list"}, {"query": "List three popular programming languages.", "type": "task", "task_type": "list"}, {"query": "What is photosynthesis?", "type": "task", "task_type": "qa"}, {"query": "How many planets are in our solar system?", "type": "task", "task_type": "qa"}, ], # Pool 2 [ {"query": "List three indoor plants.", "type": "task", "task_type": "list"}, {"query": "List three types of sports.", "type": "task", "task_type": "list"}, {"query": "What is artificial intelligence?", "type": "task", "task_type": "qa"}, {"query": "How long is a day on Earth?", "type": "task", "task_type": "qa"}, ], # Pool 3 [ {"query": "List three musical instruments.", "type": "task", "task_type": "list"}, {"query": "List three social media platforms.", "type": "task", "task_type": "list"}, {"query": "What is blockchain?", "type": "task", "task_type": "qa"}, {"query": "How long does it take the Moon to orbit Earth?", "type": "task", "task_type": "qa"}, ], # Pool 4 [ {"query": "List three types of birds.", "type": "task", "task_type": "list"}, {"query": "List three database systems.", "type": "task", "task_type": "list"}, {"query": "What is machine learning?", "type": "task", "task_type": "qa"}, {"query": "What is the boiling point of water?", "type": "task", "task_type": "qa"}, ], ] pools = zh_task_pools if prefs.lang == "zh" else en_task_pools # Rotate through pools based on session index pool_idx = (session_idx - 4) % len(pools) return pools[pool_idx] def get_queries_for_session(persona: Persona, session_id: int) -> List[Dict[str, Any]]: """ Get queries for a specific session. S1: Preference reveal S2: Pure task (no reminder) S3: Tasks with ONE reminder S4+: Pure task (testing long-term retention) """ if session_id == 1: return get_session_1_queries_for_persona(persona) elif session_id == 2: return get_session_2_queries_for_persona(persona) elif session_id == 3: return get_session_3_queries_for_persona(persona) else: return get_pure_task_queries_for_persona(persona, session_id) # ============================================================================= # Logging # ============================================================================= @dataclass class TurnLog: """Log entry for one turn.""" user_id: str persona_id: str session_id: int turn_id: int query: str query_type: str task_type: str answer: str answer_length: int sat_t: float sev_t: float prog_t: float violations: List[str] enforced_constraints: List[str] reward: float gating: float is_complaint: bool reveal_state_before: Dict[str, bool] reveal_state_after: Dict[str, bool] newly_revealed: List[str] z_long_norm_before: float z_long_norm_after: float z_short_norm_before: float z_short_norm_after: float prompt_tokens: int completion_tokens: int total_tokens: int # Memory retrieval details num_memories_retrieved: int num_prefs_extracted: int selected_memory_ids: List[str] selected_memory_notes: List[str] selected_memory_scores: List[float] num_candidates: int num_total_memories: int # Mode indicators mode: str # "full" or "nopersonal" eval_mode: bool # True = greedy, False = sample def log_to_jsonl(logs: List[TurnLog], filepath: str): os.makedirs(os.path.dirname(filepath), exist_ok=True) with open(filepath, "w") as f: for log in logs: f.write(json.dumps(asdict(log)) + "\n") # ============================================================================= # Session Runner with Complaint Injection (FIX 5) # ============================================================================= def run_session_v4( llm: PersonalizedLLM, user_id: str, persona: Persona, session_id: int, reveal_state: RevealState, base_queries: List[Dict[str, Any]], all_logs: List[TurnLog], enable_complaints: bool = True, ) -> List[TurnLog]: """ Run session with violation-triggered complaint injection. """ prefs = persona.style_prefs session_logs: List[TurnLog] = [] print(f"\n{'='*60}") print(f"[{persona.persona_id}] Session {session_id}: base queries={len(base_queries)}") print(f"Reveal state (start): {reveal_state}") print(f"{'='*60}") llm.reset_session(user_id) # Build dynamic query queue query_queue = list(base_queries) turn_id = 0 while query_queue: q_info = query_queue.pop(0) query = q_info["query"] query_type = q_info.get("type", "task") task_type = q_info.get("task_type", "general") is_complaint = q_info.get("is_complaint", False) print(f"\n--- S{session_id}/T{turn_id} [{query_type}]{' [COMPLAINT]' if is_complaint else ''} ---") print(f"[Q] {query[:60]}{'...' if len(query) > 60 else ''}") reveal_before = reveal_state.to_dict() newly_revealed = update_reveal_state(reveal_state, query, prefs) if newly_revealed: print(f"[Reveal] Newly: {newly_revealed}") reveal_after = reveal_state.to_dict() state_before = llm.get_user_state_summary(user_id) z_long_before = state_before["z_long_norm"] z_short_before = state_before["z_short_norm"] # Apply feedback for previous turn if turn_id > 0 and session_logs: prev_log = session_logs[-1] feedback = Feedback( user_id=user_id, turn_id=prev_log.turn_id, reward=prev_log.reward, gating=prev_log.gating, meta={"source": "pilot_v4", "session_id": session_id} ) llm.apply_feedback(feedback) # Chat resp: AssistantResponse = llm.chat(user_id, query) answer_display = resp.answer[:80] + "..." if len(resp.answer) > 80 else resp.answer print(f"[A] ({len(resp.answer)}c) {answer_display}") # Judge judge_result = style_judge_v4(query, resp.answer, task_type, prefs, reveal_state) print(f"[J] sat={judge_result.sat_t:.2f}, enforced={judge_result.enforced_constraints}, viol={judge_result.violations}") # Compute feedback reward, gating = compute_feedback_for_turn(query, query_type, judge_result) state_after = llm.get_user_state_summary(user_id) z_long_after = state_after["z_long_norm"] z_short_after = state_after["z_short_norm"] # Extract memory info from debug if resp.debug: num_memories = len(resp.debug.selected_memory_ids) num_prefs = len(resp.debug.extracted_preferences) selected_memory_ids = resp.debug.selected_memory_ids selected_memory_notes = resp.debug.selected_memory_notes selected_memory_scores = resp.debug.selected_memory_scores num_candidates = resp.debug.extra.get("num_candidates", 0) num_total_memories = resp.debug.extra.get("num_total_memories", 0) else: num_memories = 0 num_prefs = 0 selected_memory_ids = [] selected_memory_notes = [] selected_memory_scores = [] num_candidates = 0 num_total_memories = 0 # Log log = TurnLog( user_id=user_id, persona_id=persona.persona_id, session_id=session_id, turn_id=turn_id, query=query, query_type=query_type, task_type=task_type, answer=resp.answer, answer_length=len(resp.answer), sat_t=judge_result.sat_t, sev_t=judge_result.sev_t, prog_t=judge_result.prog_t, violations=judge_result.violations, enforced_constraints=judge_result.enforced_constraints, reward=reward, gating=gating, is_complaint=is_complaint, reveal_state_before=reveal_before, reveal_state_after=reveal_after, newly_revealed=list(newly_revealed), z_long_norm_before=z_long_before, z_long_norm_after=z_long_after, z_short_norm_before=z_short_before, z_short_norm_after=z_short_after, prompt_tokens=resp.usage.prompt_tokens, completion_tokens=resp.usage.completion_tokens, total_tokens=resp.usage.total_tokens, num_memories_retrieved=num_memories, num_prefs_extracted=num_prefs, selected_memory_ids=selected_memory_ids, selected_memory_notes=selected_memory_notes, selected_memory_scores=selected_memory_scores, num_candidates=num_candidates, num_total_memories=num_total_memories, mode=llm.mode, eval_mode=llm.eval_mode, ) session_logs.append(log) all_logs.append(log) # FIX 5: Inject complaint if there were violations and this wasn't already a complaint if enable_complaints and judge_result.violations and not is_complaint: complaint = generate_complaint_query(judge_result.violations, prefs) if complaint: complaint["is_complaint"] = True query_queue.insert(0, complaint) # Insert at front print(f"[Complaint Injected] Will complain about: {judge_result.violations}") turn_id += 1 # Final feedback if session_logs: last_log = session_logs[-1] feedback = Feedback( user_id=user_id, turn_id=last_log.turn_id, reward=last_log.reward, gating=last_log.gating, meta={"source": "pilot_v4", "session_id": session_id, "final": True} ) llm.apply_feedback(feedback) print(f"\n[Session {session_id} End] Reveal: {reveal_state}, Turns: {turn_id}") return session_logs # ============================================================================= # Multi-User Multi-Session Runner # ============================================================================= def run_multi_user_pilot_v4( llm: PersonalizedLLM, personas: List[Persona], num_sessions: int = 3, enable_complaints: bool = True, ) -> List[TurnLog]: """Run multi-user multi-session pilot v4.""" reveal_manager = RevealStateManager() all_logs: List[TurnLog] = [] print(f"\n{'#'*60}") print(f"PILOT v4: MULTI-USER MULTI-SESSION (Fixed)") print(f"Users: {len(personas)}, Sessions: {num_sessions}, Complaints: {enable_complaints}") print(f"{'#'*60}") for persona in personas: user_id = f"user_{persona.persona_id}" prefs = persona.style_prefs print(f"\n{'*'*60}") print(f"USER: {user_id}") print(f"Persona: {persona.description}") print(f"True prefs: short={prefs.require_short}, bullets={prefs.require_bullets}, lang={prefs.lang}") print(f"{'*'*60}") llm.reset_user(user_id) reveal_manager.reset_user(user_id) reveal_state = reveal_manager.get_state(user_id) for session_id in range(1, num_sessions + 1): queries = get_queries_for_session(persona, session_id) reveal_manager.reset_session(user_id) run_session_v4(llm, user_id, persona, session_id, reveal_state, queries, all_logs, enable_complaints) return all_logs # ============================================================================= # Summary # ============================================================================= def print_summary_v4(logs: List[TurnLog]): """Print summary for pilot v4.""" print(f"\n{'='*60}") print("PILOT v4 SUMMARY") print(f"{'='*60}") if not logs: print("No logs.") return from collections import Counter personas = sorted(set(l.persona_id for l in logs)) print(f"\n--- Per-Persona Statistics ---") for pid in personas: p_logs = [l for l in logs if l.persona_id == pid] sessions = sorted(set(l.session_id for l in p_logs)) print(f"\n{pid}:") for sid in sessions: s_logs = [l for l in p_logs if l.session_id == sid] avg_sat = sum(l.sat_t for l in s_logs) / len(s_logs) if s_logs else 0 violations = [v for l in s_logs for v in l.violations] enforced = set(c for l in s_logs for c in l.enforced_constraints) complaints = sum(1 for l in s_logs if l.is_complaint) print(f" S{sid}: {len(s_logs)} turns, avg_sat={avg_sat:.3f}, complaints={complaints}") print(f" enforced={enforced}") if violations: print(f" violations: {dict(Counter(violations))}") # Cross-session retention print(f"\n--- Cross-Session Retention (S2 without preferences) ---") for pid in personas: p_logs = [l for l in logs if l.persona_id == pid] s1_logs = [l for l in p_logs if l.session_id == 1] s2_logs = [l for l in p_logs if l.session_id == 2] if s1_logs and s2_logs: s1_sat = sum(l.sat_t for l in s1_logs) / len(s1_logs) s2_sat = sum(l.sat_t for l in s2_logs) / len(s2_logs) s2_enforced = set(c for l in s2_logs for c in l.enforced_constraints) print(f"{pid}: S1={s1_sat:.3f} → S2={s2_sat:.3f}, enforced={s2_enforced}") # Violation rates print(f"\n--- Violation Rates by Type ---") all_violations = [v for l in logs for v in l.violations] total_turns = len(logs) if all_violations: for v, count in Counter(all_violations).most_common(): rate = count / total_turns * 100 print(f" {v}: {count} ({rate:.1f}%)") else: print(" No violations") # Complaint effectiveness print(f"\n--- Complaint Effectiveness ---") complaint_logs = [l for l in logs if l.is_complaint] if complaint_logs: print(f"Total complaints: {len(complaint_logs)}") avg_sat_complaint = sum(l.sat_t for l in complaint_logs) / len(complaint_logs) print(f"Avg sat on complaint turns: {avg_sat_complaint:.3f}") else: print("No complaints generated") # Overall total = len(logs) avg_sat = sum(l.sat_t for l in logs) / total total_tokens = sum(l.total_tokens for l in logs) print(f"\n--- Overall ---") print(f"Total turns: {total}, Avg sat: {avg_sat:.3f}, Total tokens: {total_tokens}") def main(): import argparse parser = argparse.ArgumentParser(description="Pilot Runner v4 - Full vs Vanilla Comparison") parser.add_argument("--mode", type=str, choices=["full", "full-greedy", "full-sample", "nopersonal", "vanilla", "compare", "all"], default="compare", help="Mode: 'full-greedy' (personalized, deterministic), " "'full-sample' (personalized, stochastic), " "'nopersonal' (retrieval baseline without z_u), " "'vanilla' (pure LLM, no memory), " "'compare' (full-greedy vs vanilla), " "'all' (run all modes)") parser.add_argument("--seed", type=int, default=42, help="Random seed for reproducibility") parser.add_argument("--sessions", type=int, default=3, help="Number of sessions per user") parser.add_argument("--no-complaints", action="store_true", help="Disable complaint injection") args = parser.parse_args() # Set seeds for reproducibility import random import numpy as np random.seed(args.seed) np.random.seed(args.seed) print("=" * 60) print("PILOT RUNNER v4 - Full vs Vanilla Comparison") print("=" * 60) print(f"Started at: {datetime.now().isoformat()}") print(f"Mode: {args.mode}, Seed: {args.seed}, Sessions: {args.sessions}") personas = ALL_PERSONAS print(f"\n[Config] {len(personas)} personas:") for p in personas: print(f" - {p.persona_id}: {p.description}") enable_complaints = not args.no_complaints # Map mode argument to actual run configurations # Each config: (mode_name, llm_mode, eval_mode) # llm_mode: "full", "nopersonal", or "vanilla" # eval_mode: True = greedy/deterministic, False = stochastic sampling if args.mode == "all": run_configs = [ ("full-greedy", "full", True), ("full-sample", "full", False), ("nopersonal", "nopersonal", True), ("vanilla", "vanilla", True), ] elif args.mode == "compare": # Main comparison: Full (with memory) vs Vanilla (no memory) run_configs = [ ("full-greedy", "full", True), ("vanilla", "vanilla", True), ] elif args.mode == "full" or args.mode == "full-greedy": run_configs = [("full-greedy", "full", True)] elif args.mode == "full-sample": run_configs = [("full-sample", "full", False)] elif args.mode == "vanilla": run_configs = [("vanilla", "vanilla", True)] elif args.mode == "nopersonal": run_configs = [("nopersonal", "nopersonal", True)] else: run_configs = [(args.mode, args.mode, True)] for run_name, llm_mode, eval_mode in run_configs: print(f"\n{'#'*60}") print(f"RUNNING: {run_name.upper()}") print(f" llm_mode={llm_mode}, eval_mode={eval_mode} ({'greedy' if eval_mode else 'sample'})") print(f"{'#'*60}") # Reset seeds before each run for exact reproducibility random.seed(args.seed) np.random.seed(args.seed) print(f"\n[Init] Loading PersonalizedLLM...") llm = PersonalizedLLM( user_store_path=f"data/users/user_store_pilot_v4_{run_name}.npz", only_own_memories=True, enable_preference_extraction=True, enable_rl_updates=(llm_mode == "full"), # Disable RL for nopersonal mode=llm_mode, eval_mode=eval_mode, device_assignment={ "embed": "cuda:0", "reranker": "cuda:1", "chat": "cuda:2", "extractor": "cuda:3", }, ) logs = run_multi_user_pilot_v4(llm, personas, num_sessions=args.sessions, enable_complaints=enable_complaints) print_summary_v4(logs) log_path = f"data/logs/pilot_v4_{run_name}_{datetime.now().strftime('%Y%m%d_%H%M%S')}.jsonl" log_to_jsonl(logs, log_path) print(f"\n[Logs] Saved to: {log_path}") # Save user vectors for similarity analysis if llm_mode == "full": llm.persist() print(f"[Persist] User vectors saved to: {llm._user_store.path}") print(f"\nCompleted at: {datetime.now().isoformat()}") print("=" * 60) if __name__ == "__main__": main()