#!/bin/bash #SBATCH --job-name=snn_adapt_exp #SBATCH --account=bfqt-delta-gpu #SBATCH --partition=gpuA40x4 #SBATCH --nodes=1 #SBATCH --ntasks=1 #SBATCH --cpus-per-task=8 #SBATCH --gpus-per-node=1 #SBATCH --mem=64G #SBATCH --time=12:00:00 #SBATCH --output=runs/slurm_logs/%j_adaptive_exp.out #SBATCH --error=runs/slurm_logs/%j_adaptive_exp.err # ============================================================ # Experiment: Adaptive Exponential Regularization # ============================================================ # Penalty = (exp(excess) - 1) * excess where excess = max(0, λ - threshold) # This gives: # - Zero penalty when λ < threshold # - Exponential growth for λ > threshold (very gentle near threshold, explosive when chaotic) # ============================================================ set -e PROJECT_DIR="/projects/bfqt/users/yurenh2/ml-projects/snn-training" cd "$PROJECT_DIR" mkdir -p runs/slurm_logs data runs/adaptive_exp echo "============================================================" echo "ADAPTIVE EXPONENTIAL Regularization" echo "Job ID: $SLURM_JOB_ID | Node: $SLURM_NODELIST" echo "Start: $(date)" echo "============================================================" nvidia-smi --query-gpu=name,memory.total --format=csv,noheader echo "============================================================" python files/experiments/depth_scaling_benchmark.py \ --dataset cifar100 \ --depths 4 8 12 16 \ --T 4 \ --epochs 150 \ --batch_size 128 \ --lr 0.001 \ --lambda_reg 0.3 \ --lambda_target -0.1 \ --reg_type adaptive_exp \ --lyap_threshold 2.0 \ --warmup_epochs 10 \ --data_dir ./data \ --out_dir runs/adaptive_exp \ --device cuda echo "============================================================" echo "Finished: $(date)" echo "============================================================"