#!/bin/bash #SBATCH --job-name=snn_adapt_sig #SBATCH --account=bfqt-delta-gpu #SBATCH --partition=gpuA40x4 #SBATCH --nodes=1 #SBATCH --ntasks=1 #SBATCH --cpus-per-task=8 #SBATCH --gpus-per-node=1 #SBATCH --mem=64G #SBATCH --time=12:00:00 #SBATCH --output=runs/slurm_logs/%j_adaptive_sigmoid.out #SBATCH --error=runs/slurm_logs/%j_adaptive_sigmoid.err # ============================================================ # Experiment: Adaptive Sigmoid Regularization # ============================================================ # Penalty = sigmoid((λ - threshold) / T) * (λ - target)² # This gives: # - Smooth transition around threshold (not hard cutoff) # - ~0 penalty when λ << threshold # - Full penalty when λ >> threshold # ============================================================ set -e PROJECT_DIR="/projects/bfqt/users/yurenh2/ml-projects/snn-training" cd "$PROJECT_DIR" mkdir -p runs/slurm_logs data runs/adaptive_sigmoid echo "============================================================" echo "ADAPTIVE SIGMOID Regularization" echo "Job ID: $SLURM_JOB_ID | Node: $SLURM_NODELIST" echo "Start: $(date)" echo "============================================================" nvidia-smi --query-gpu=name,memory.total --format=csv,noheader echo "============================================================" python files/experiments/depth_scaling_benchmark.py \ --dataset cifar100 \ --depths 4 8 12 16 \ --T 4 \ --epochs 150 \ --batch_size 128 \ --lr 0.001 \ --lambda_reg 0.3 \ --lambda_target -0.1 \ --reg_type adaptive_sigmoid \ --lyap_threshold 2.0 \ --warmup_epochs 10 \ --data_dir ./data \ --out_dir runs/adaptive_sigmoid \ --device cuda echo "============================================================" echo "Finished: $(date)" echo "============================================================"