#!/bin/bash #SBATCH --job-name=snn_cifar10 #SBATCH --account=bfqt-delta-gpu #SBATCH --partition=gpuA40x4 #SBATCH --nodes=1 #SBATCH --ntasks=1 #SBATCH --cpus-per-task=8 #SBATCH --gpus-per-node=1 #SBATCH --mem=64G #SBATCH --time=08:00:00 #SBATCH --output=runs/slurm_logs/%j_cifar10.out #SBATCH --error=runs/slurm_logs/%j_cifar10.err # ============================================================ # CIFAR-10 Rate-Coded Experiment # ============================================================ # Challenge: # - 3072 input dimensions (32x32x3 flattened) # - Requires hierarchical feature learning # - Deep networks essential for good accuracy # # This is the hardest benchmark - real image classification # ============================================================ set -e PROJECT_DIR="/projects/bfqt/users/yurenh2/ml-projects/snn-training" cd "$PROJECT_DIR" mkdir -p runs/slurm_logs data echo "============================================================" echo "CIFAR-10 Rate-Coded Experiment" echo "Job ID: $SLURM_JOB_ID | Node: $SLURM_NODELIST" echo "Start: $(date)" echo "============================================================" nvidia-smi --query-gpu=name,memory.total --format=csv,noheader echo "============================================================" # CIFAR-10 with deeper networks (needs more capacity) python files/experiments/benchmark_experiment.py \ --dataset cifar10 \ --depths 4 6 8 10 12 \ --hidden_dim 256 \ --epochs 50 \ --batch_size 64 \ --lr 0.0005 \ --T 100 \ --lambda_reg 0.5 \ --lambda_target -0.2 \ --data_dir ./data \ --out_dir runs/benchmark \ --device cuda echo "============================================================" echo "Finished: $(date)" echo "============================================================"