#!/bin/bash #SBATCH --job-name=snn_cifar10_conv #SBATCH --account=bfqt-delta-gpu #SBATCH --partition=gpuA40x4 #SBATCH --nodes=1 #SBATCH --ntasks=1 #SBATCH --cpus-per-task=8 #SBATCH --gpus-per-node=1 #SBATCH --mem=64G #SBATCH --time=48:00:00 #SBATCH --output=runs/slurm_logs/%j_cifar10_conv.out #SBATCH --error=runs/slurm_logs/%j_cifar10_conv.err # ============================================================ # CIFAR-10 Conv-SNN Experiment (Proper Architecture) # ============================================================ # Uses convolutional SNN that preserves spatial structure: # Image (3,32,32) → Rate Encoding → Conv-LIF-Pool → FC → Output # # Tests whether Lyapunov regularization helps deeper Conv-SNNs # ============================================================ set -e PROJECT_DIR="/projects/bfqt/users/yurenh2/ml-projects/snn-training" cd "$PROJECT_DIR" mkdir -p runs/slurm_logs data echo "============================================================" echo "CIFAR-10 Conv-SNN Experiment" echo "Job ID: $SLURM_JOB_ID | Node: $SLURM_NODELIST" echo "Start: $(date)" echo "============================================================" nvidia-smi --query-gpu=name,memory.total --format=csv,noheader echo "============================================================" python files/experiments/cifar10_conv_experiment.py \ --model simple \ --T 25 \ --epochs 50 \ --batch_size 128 \ --lr 0.001 \ --lambda_reg 0.3 \ --lambda_target -0.1 \ --data_dir ./data \ --out_dir runs/cifar10_conv \ --device cuda echo "============================================================" echo "Finished: $(date)" echo "============================================================"