#!/bin/bash #SBATCH --job-name=snn_cifar10_depth #SBATCH --account=bfqt-delta-gpu #SBATCH --partition=gpuA40x4 #SBATCH --nodes=1 #SBATCH --ntasks=1 #SBATCH --cpus-per-task=8 #SBATCH --gpus-per-node=1 #SBATCH --mem=32G #SBATCH --time=48:00:00 #SBATCH --output=runs/slurm_logs/%j_cifar10_depth.out #SBATCH --error=runs/slurm_logs/%j_cifar10_depth.err # ============================================================ # CIFAR-10 Depth Scaling Benchmark (Baseline) # ============================================================ # CIFAR-10 is easier (10 classes) - used as baseline comparison. # # Reference from literature: # - Spiking VGG 7 layers: ~88% accuracy # - Spiking VGG 13 layers: ~91.6% accuracy # # This experiment validates our implementation against known results. # ============================================================ set -e PROJECT_DIR="/projects/bfqt/users/yurenh2/ml-projects/snn-training" cd "$PROJECT_DIR" mkdir -p runs/slurm_logs data echo "============================================================" echo "CIFAR-10 Depth Scaling Benchmark" echo "Job ID: $SLURM_JOB_ID | Node: $SLURM_NODELIST" echo "Start: $(date)" echo "============================================================" nvidia-smi --query-gpu=name,memory.total --format=csv,noheader echo "============================================================" python files/experiments/depth_scaling_benchmark.py \ --dataset cifar10 \ --depths 4 8 12 16 \ --T 4 \ --epochs 100 \ --batch_size 128 \ --lr 0.001 \ --lambda_reg 0.3 \ --lambda_target -0.1 \ --data_dir ./data \ --out_dir runs/depth_scaling \ --device cuda echo "============================================================" echo "Finished: $(date)" echo "============================================================"