#!/bin/bash #SBATCH --job-name=snn_hinge #SBATCH --account=bfqt-delta-gpu #SBATCH --partition=gpuA40x4 #SBATCH --nodes=1 #SBATCH --ntasks=1 #SBATCH --cpus-per-task=8 #SBATCH --gpus-per-node=1 #SBATCH --mem=64G #SBATCH --time=48:00:00 #SBATCH --output=runs/slurm_logs/%j_hinge.out #SBATCH --error=runs/slurm_logs/%j_hinge.err # ============================================================ # Hinge Loss Lyapunov Regularization Experiment # ============================================================ # Hypothesis: Using hinge loss (only penalize chaos, not stability) # will allow the network to learn while still preventing chaotic # dynamics. # # Hinge loss: max(0, lambda)^2 # - Only penalizes positive Lyapunov (chaos) # - Allows negative Lyapunov (stable dynamics) without penalty # - Combined with warmup to let network start learning first # ============================================================ set -e PROJECT_DIR="/projects/bfqt/users/yurenh2/ml-projects/snn-training" cd "$PROJECT_DIR" mkdir -p runs/slurm_logs data echo "============================================================" echo "HINGE LOSS Lyapunov Regularization" echo "Job ID: $SLURM_JOB_ID | Node: $SLURM_NODELIST" echo "Start: $(date)" echo "============================================================" nvidia-smi --query-gpu=name,memory.total --format=csv,noheader echo "============================================================" # Test depths: 4, 8, 12, 16 conv layers # Using hinge loss + 20 epoch warmup python files/experiments/depth_scaling_benchmark.py \ --dataset cifar100 \ --depths 4 8 12 16 \ --T 4 \ --epochs 150 \ --batch_size 128 \ --lr 0.001 \ --lambda_reg 0.3 \ --lambda_target -0.1 \ --reg_type hinge \ --warmup_epochs 20 \ --data_dir ./data \ --out_dir runs/depth_scaling_hinge \ --device cuda echo "============================================================" echo "Finished: $(date)" echo "============================================================"