#!/bin/bash #SBATCH --job-name=snn_extreme #SBATCH --account=bfqt-delta-gpu #SBATCH --partition=gpuA40x4 #SBATCH --nodes=1 #SBATCH --ntasks=1 #SBATCH --cpus-per-task=8 #SBATCH --gpus-per-node=1 #SBATCH --mem=64G #SBATCH --time=48:00:00 #SBATCH --output=runs/slurm_logs/%j_extreme.out #SBATCH --error=runs/slurm_logs/%j_extreme.err # ============================================================ # Experiment 4: Extreme-Only Penalty (lambda > 2.0) # ============================================================ # Hypothesis: Instead of trying to push lambda toward 0 or -0.1, # only penalize when dynamics become EXTREMELY chaotic (lambda > 2). # # Extreme reg_type: # - penalty = max(0, lambda - 2.0)^2 # - No penalty when lambda <= 2.0 # - Allows moderate chaos while preventing explosion # ============================================================ set -e PROJECT_DIR="/projects/bfqt/users/yurenh2/ml-projects/snn-training" cd "$PROJECT_DIR" mkdir -p runs/slurm_logs data echo "============================================================" echo "EXTREME-ONLY PENALTY Experiment (lambda > 2.0)" echo "Job ID: $SLURM_JOB_ID | Node: $SLURM_NODELIST" echo "Start: $(date)" echo "============================================================" nvidia-smi --query-gpu=name,memory.total --format=csv,noheader echo "============================================================" python files/experiments/depth_scaling_benchmark.py \ --dataset cifar100 \ --depths 4 8 12 16 \ --T 4 \ --epochs 150 \ --batch_size 128 \ --lr 0.001 \ --lambda_reg 0.3 \ --lambda_target -0.1 \ --reg_type extreme \ --warmup_epochs 10 \ --data_dir ./data \ --out_dir runs/depth_scaling_extreme \ --device cuda echo "============================================================" echo "Finished: $(date)" echo "============================================================"