#!/bin/bash #SBATCH --job-name=snn_posthoc #SBATCH --account=bfqt-delta-gpu #SBATCH --partition=gpuA40x4 #SBATCH --nodes=1 #SBATCH --ntasks=1 #SBATCH --cpus-per-task=8 #SBATCH --gpus-per-node=1 #SBATCH --mem=64G #SBATCH --time=48:00:00 #SBATCH --output=runs/slurm_logs/%j_posthoc.out #SBATCH --error=runs/slurm_logs/%j_posthoc.err # ============================================================ # Experiment: Post-hoc Lyapunov Fine-tuning # ============================================================ # Strategy: # 1. Train vanilla network for 100 epochs (learn features) # 2. Fine-tune with Lyapunov regularization for 50 epochs # # This allows the network to learn first, then we stabilize # the dynamics without fighting chaotic initialization. # ============================================================ set -e PROJECT_DIR="/projects/bfqt/users/yurenh2/ml-projects/snn-training" cd "$PROJECT_DIR" mkdir -p runs/slurm_logs data runs/posthoc_finetune echo "============================================================" echo "POST-HOC FINE-TUNING Experiment" echo "Job ID: $SLURM_JOB_ID | Node: $SLURM_NODELIST" echo "Start: $(date)" echo "============================================================" nvidia-smi --query-gpu=name,memory.total --format=csv,noheader echo "============================================================" python files/experiments/posthoc_finetune.py \ --dataset cifar100 \ --depths 4 8 12 16 \ --T 4 \ --pretrain_epochs 100 \ --finetune_epochs 50 \ --batch_size 128 \ --lr 0.001 \ --finetune_lr 0.0001 \ --lambda_reg 0.1 \ --lambda_target -0.1 \ --reg_type extreme \ --lyap_threshold 2.0 \ --data_dir ./data \ --out_dir runs/posthoc_finetune \ --device cuda echo "============================================================" echo "Finished: $(date)" echo "============================================================"