#!/bin/bash #SBATCH --job-name=snn_smnist #SBATCH --account=bfqt-delta-gpu #SBATCH --partition=gpuA40x4 #SBATCH --nodes=1 #SBATCH --ntasks=1 #SBATCH --cpus-per-task=8 #SBATCH --gpus-per-node=1 #SBATCH --mem=32G #SBATCH --time=48:00:00 #SBATCH --output=runs/slurm_logs/%j_smnist.out #SBATCH --error=runs/slurm_logs/%j_smnist.err # ============================================================ # Sequential MNIST Experiment # ============================================================ # This is a HARD benchmark: # - 784 timesteps (one pixel at a time) # - Requires long-range temporal memory # - Shallow networks struggle, deep networks needed # # Expected: Lyapunov regularization significantly helps at depth 6+ # ============================================================ set -e PROJECT_DIR="/projects/bfqt/users/yurenh2/ml-projects/snn-training" cd "$PROJECT_DIR" mkdir -p runs/slurm_logs data echo "============================================================" echo "Sequential MNIST Experiment" echo "Job ID: $SLURM_JOB_ID | Node: $SLURM_NODELIST" echo "Start: $(date)" echo "============================================================" nvidia-smi --query-gpu=name,memory.total --format=csv,noheader echo "============================================================" # Sequential MNIST with depths up to 10 python files/experiments/benchmark_experiment.py \ --dataset smnist \ --depths 2 4 6 8 10 \ --hidden_dim 128 \ --epochs 30 \ --batch_size 128 \ --lr 0.001 \ --lambda_reg 0.3 \ --lambda_target -0.1 \ --data_dir ./data \ --out_dir runs/benchmark \ --device cuda echo "============================================================" echo "Finished: $(date)" echo "============================================================"