#!/bin/bash #SBATCH --job-name=snn_target1 #SBATCH --account=bfqt-delta-gpu #SBATCH --partition=gpuA40x4 #SBATCH --nodes=1 #SBATCH --ntasks=1 #SBATCH --cpus-per-task=8 #SBATCH --gpus-per-node=1 #SBATCH --mem=64G #SBATCH --time=48:00:00 #SBATCH --output=runs/slurm_logs/%j_target1.out #SBATCH --error=runs/slurm_logs/%j_target1.err # ============================================================ # Experiment 2: Smarter Target (lambda_target=1.0) # ============================================================ # Hypothesis: Targeting lambda=-0.1 (edge of chaos) is too aggressive # when the network naturally starts at lambda~2-3 (chaotic). # # With lambda_target=1.0: # - We aim to REDUCE chaos, not eliminate it # - Penalty: (lambda - 1.0)^2 is smaller when lambda~2 # - Allows some chaos while preventing extreme instability # ============================================================ set -e PROJECT_DIR="/projects/bfqt/users/yurenh2/ml-projects/snn-training" cd "$PROJECT_DIR" mkdir -p runs/slurm_logs data echo "============================================================" echo "SMARTER TARGET Experiment (lambda_target=1.0)" echo "Job ID: $SLURM_JOB_ID | Node: $SLURM_NODELIST" echo "Start: $(date)" echo "============================================================" nvidia-smi --query-gpu=name,memory.total --format=csv,noheader echo "============================================================" python files/experiments/depth_scaling_benchmark.py \ --dataset cifar100 \ --depths 4 8 12 16 \ --T 4 \ --epochs 150 \ --batch_size 128 \ --lr 0.001 \ --lambda_reg 0.1 \ --lambda_target 1.0 \ --reg_type squared \ --warmup_epochs 20 \ --data_dir ./data \ --out_dir runs/depth_scaling_target1 \ --device cuda echo "============================================================" echo "Finished: $(date)" echo "============================================================"