#!/bin/bash #SBATCH --job-name=snn_wkext #SBATCH --account=bfqt-delta-gpu #SBATCH --partition=gpuA40x4 #SBATCH --nodes=1 #SBATCH --ntasks=1 #SBATCH --cpus-per-task=8 #SBATCH --gpus-per-node=1 #SBATCH --mem=64G #SBATCH --time=48:00:00 #SBATCH --output=runs/slurm_logs/%j_weak_extreme.out #SBATCH --error=runs/slurm_logs/%j_weak_extreme.err # ============================================================ # Experiment: Weak Reg + Extreme Threshold # ============================================================ # Combine both approaches: # - Very weak regularization (lambda_reg=0.01) # - Only penalize extreme chaos (lambda > 3.0) # # This should give the network maximum freedom to learn while # providing a safety net against explosive dynamics. # ============================================================ set -e PROJECT_DIR="/projects/bfqt/users/yurenh2/ml-projects/snn-training" cd "$PROJECT_DIR" mkdir -p runs/slurm_logs data echo "============================================================" echo "WEAK REG + EXTREME Experiment" echo "Job ID: $SLURM_JOB_ID | Node: $SLURM_NODELIST" echo "Start: $(date)" echo "============================================================" nvidia-smi --query-gpu=name,memory.total --format=csv,noheader echo "============================================================" python files/experiments/depth_scaling_benchmark.py \ --dataset cifar100 \ --depths 4 8 12 16 \ --T 4 \ --epochs 150 \ --batch_size 128 \ --lr 0.001 \ --lambda_reg 0.01 \ --lambda_target -0.1 \ --reg_type extreme \ --lyap_threshold 3.0 \ --warmup_epochs 20 \ --data_dir ./data \ --out_dir runs/depth_scaling_weak_extreme \ --device cuda echo "============================================================" echo "Finished: $(date)" echo "============================================================"