#!/bin/bash #SBATCH --job-name=snn_weak_reg #SBATCH --account=bfqt-delta-gpu #SBATCH --partition=gpuA40x4 #SBATCH --nodes=1 #SBATCH --ntasks=1 #SBATCH --cpus-per-task=8 #SBATCH --gpus-per-node=1 #SBATCH --mem=64G #SBATCH --time=48:00:00 #SBATCH --output=runs/slurm_logs/%j_weak_reg.out #SBATCH --error=runs/slurm_logs/%j_weak_reg.err # ============================================================ # Experiment 1: Weaker Regularization (lambda_reg=0.01) # ============================================================ # Hypothesis: The current lambda_reg=0.3 is too strong, causing # the Lyapunov penalty to dominate the CE loss and prevent learning. # # With lambda_reg=0.01: # - Penalty contribution: 0.01 * 4 = 0.04 (vs CE ~4.6) # - Network can still learn while gently being regularized # ============================================================ set -e PROJECT_DIR="/projects/bfqt/users/yurenh2/ml-projects/snn-training" cd "$PROJECT_DIR" mkdir -p runs/slurm_logs data echo "============================================================" echo "WEAK REGULARIZATION Experiment (lambda_reg=0.01)" echo "Job ID: $SLURM_JOB_ID | Node: $SLURM_NODELIST" echo "Start: $(date)" echo "============================================================" nvidia-smi --query-gpu=name,memory.total --format=csv,noheader echo "============================================================" python files/experiments/depth_scaling_benchmark.py \ --dataset cifar100 \ --depths 4 8 12 16 \ --T 4 \ --epochs 150 \ --batch_size 128 \ --lr 0.001 \ --lambda_reg 0.01 \ --lambda_target -0.1 \ --reg_type squared \ --warmup_epochs 20 \ --data_dir ./data \ --out_dir runs/depth_scaling_weak_reg \ --device cuda echo "============================================================" echo "Finished: $(date)" echo "============================================================"