import pytest import networkx as nx def test_dominating_set(): G = nx.gnp_random_graph(100, 0.1) D = nx.dominating_set(G) assert nx.is_dominating_set(G, D) D = nx.dominating_set(G, start_with=0) assert nx.is_dominating_set(G, D) def test_complete(): """In complete graphs each node is a dominating set. Thus the dominating set has to be of cardinality 1. """ K4 = nx.complete_graph(4) assert len(nx.dominating_set(K4)) == 1 K5 = nx.complete_graph(5) assert len(nx.dominating_set(K5)) == 1 def test_raise_dominating_set(): with pytest.raises(nx.NetworkXError): G = nx.path_graph(4) D = nx.dominating_set(G, start_with=10) def test_is_dominating_set(): G = nx.path_graph(4) d = {1, 3} assert nx.is_dominating_set(G, d) d = {0, 2} assert nx.is_dominating_set(G, d) d = {1} assert not nx.is_dominating_set(G, d) def test_wikipedia_is_dominating_set(): """Example from https://en.wikipedia.org/wiki/Dominating_set""" G = nx.cycle_graph(4) G.add_edges_from([(0, 4), (1, 4), (2, 5)]) assert nx.is_dominating_set(G, {4, 3, 5}) assert nx.is_dominating_set(G, {0, 2}) assert nx.is_dominating_set(G, {1, 2}) def test_is_connected_dominating_set(): G = nx.path_graph(4) D = {1, 2} assert nx.is_connected_dominating_set(G, D) D = {1, 3} assert not nx.is_connected_dominating_set(G, D) D = {2, 3} assert nx.is_connected(nx.subgraph(G, D)) assert not nx.is_connected_dominating_set(G, D) def test_null_graph_connected_dominating_set(): G = nx.Graph() assert 0 == len(nx.connected_dominating_set(G)) def test_single_node_graph_connected_dominating_set(): G = nx.Graph() G.add_node(1) CD = nx.connected_dominating_set(G) assert nx.is_connected_dominating_set(G, CD) def test_raise_disconnected_graph_connected_dominating_set(): with pytest.raises(nx.NetworkXError): G = nx.Graph() G.add_node(1) G.add_node(2) nx.connected_dominating_set(G) def test_complete_graph_connected_dominating_set(): K5 = nx.complete_graph(5) assert 1 == len(nx.connected_dominating_set(K5)) K7 = nx.complete_graph(7) assert 1 == len(nx.connected_dominating_set(K7)) def test_docstring_example_connected_dominating_set(): G = nx.Graph( [ (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (2, 7), (3, 8), (4, 9), (5, 10), (6, 11), (7, 12), (8, 12), (9, 12), (10, 12), (11, 12), ] ) assert {1, 2, 3, 4, 5, 6, 7} == nx.connected_dominating_set(G) @pytest.mark.parametrize("seed", [1, 13, 29]) @pytest.mark.parametrize("n,k,p", [(10, 3, 0.2), (100, 10, 0.7), (1000, 50, 0.5)]) def test_connected_watts_strogatz_graph_connected_dominating_set(n, k, p, seed): G = nx.connected_watts_strogatz_graph(n, k, p, seed=seed) D = nx.connected_dominating_set(G) assert nx.is_connected_dominating_set(G, D)