| ofs | hex dump | ascii |
|---|
| 0000 | cb 0d 0d 0a 00 00 00 00 85 fa a7 68 00 7d 00 00 e3 00 00 00 00 00 00 00 00 00 00 00 00 05 00 00 | ...........h.}.................. |
| 0020 | 00 00 00 00 00 f3 7c 05 00 00 97 00 64 00 5a 00 64 01 64 02 6c 01 5a 01 64 01 64 02 6c 02 5a 02 | ......|.....d.Z.d.d.l.Z.d.d.l.Z. |
| 0040 | 64 01 64 02 6c 03 5a 04 64 01 64 03 6c 05 6d 06 5a 06 01 00 64 01 64 04 6c 07 6d 08 5a 08 01 00 | d.d.l.Z.d.d.l.m.Z...d.d.l.m.Z... |
| 0060 | 64 01 64 05 6c 09 6d 0a 5a 0a 6d 0b 5a 0b 01 00 67 00 64 06 a2 01 5a 0c 64 07 84 00 5a 0d 02 00 | d.d.l.m.Z.m.Z...g.d...Z.d...Z... |
| 0080 | 65 04 6a 1c 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 64 02 64 08 ac 09 ab 02 00 00 | e.j...................d.d....... |
| 00a0 | 00 00 00 00 64 20 64 0a 84 01 ab 00 00 00 00 00 00 00 5a 0f 02 00 65 04 6a 1c 00 00 00 00 00 00 | ....d.d...........Z...e.j....... |
| 00c0 | 00 00 00 00 00 00 00 00 00 00 00 00 64 02 64 08 ac 09 ab 02 00 00 00 00 00 00 64 0b 84 00 ab 00 | ............d.d...........d..... |
| 00e0 | 00 00 00 00 00 00 5a 10 02 00 65 04 6a 1c 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | ......Z...e.j................... |
| 0100 | 64 02 64 08 ac 09 ab 02 00 00 00 00 00 00 64 20 64 0c 84 01 ab 00 00 00 00 00 00 00 5a 11 02 00 | d.d...........d.d...........Z... |
| 0120 | 65 04 6a 1c 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 64 02 64 08 ac 09 ab 02 00 00 | e.j...................d.d....... |
| 0140 | 00 00 00 00 64 20 64 0d 84 01 ab 00 00 00 00 00 00 00 5a 12 02 00 65 04 6a 1c 00 00 00 00 00 00 | ....d.d...........Z...e.j....... |
| 0160 | 00 00 00 00 00 00 00 00 00 00 00 00 64 02 64 08 ac 09 ab 02 00 00 00 00 00 00 64 20 64 0e 84 01 | ............d.d...........d.d... |
| 0180 | ab 00 00 00 00 00 00 00 5a 13 02 00 65 04 6a 1c 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | ........Z...e.j................. |
| 01a0 | 00 00 64 02 64 08 ac 09 ab 02 00 00 00 00 00 00 02 00 65 0a 64 01 ab 01 00 00 00 00 00 00 64 20 | ..d.d.............e.d.........d. |
| 01c0 | 64 0f 84 01 ab 00 00 00 00 00 00 00 ab 00 00 00 00 00 00 00 5a 14 02 00 65 04 6a 1c 00 00 00 00 | d...................Z...e.j..... |
| 01e0 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 64 02 64 08 ac 09 ab 02 00 00 00 00 00 00 64 20 64 10 | ..............d.d...........d.d. |
| 0200 | 84 01 ab 00 00 00 00 00 00 00 5a 15 02 00 65 04 6a 1c 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | ..........Z...e.j............... |
| 0220 | 00 00 00 00 64 02 64 08 ac 09 ab 02 00 00 00 00 00 00 64 20 64 11 84 01 ab 00 00 00 00 00 00 00 | ....d.d...........d.d........... |
| 0240 | 5a 16 02 00 65 04 6a 1c 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 64 02 64 08 ac 09 | Z...e.j...................d.d... |
| 0260 | ab 02 00 00 00 00 00 00 02 00 65 0a 64 01 ab 01 00 00 00 00 00 00 64 20 64 12 84 01 ab 00 00 00 | ..........e.d.........d.d....... |
| 0280 | 00 00 00 00 ab 00 00 00 00 00 00 00 5a 17 02 00 65 04 6a 1c 00 00 00 00 00 00 00 00 00 00 00 00 | ............Z...e.j............. |
| 02a0 | 00 00 00 00 00 00 64 02 64 08 ac 09 ab 02 00 00 00 00 00 00 64 20 64 13 84 01 ab 00 00 00 00 00 | ......d.d...........d.d......... |
| 02c0 | 00 00 5a 18 02 00 65 04 6a 1c 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 64 02 64 08 | ..Z...e.j...................d.d. |
| 02e0 | ac 09 ab 02 00 00 00 00 00 00 02 00 65 0a 64 01 ab 01 00 00 00 00 00 00 64 01 64 02 65 06 66 03 | ............e.d.........d.d.e.f. |
| 0300 | 64 14 84 01 ab 00 00 00 00 00 00 00 ab 00 00 00 00 00 00 00 5a 19 02 00 65 04 6a 1c 00 00 00 00 | d...................Z...e.j..... |
| 0320 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 64 02 64 08 ac 09 ab 02 00 00 00 00 00 00 64 20 64 15 | ..............d.d...........d.d. |
| 0340 | 84 01 ab 00 00 00 00 00 00 00 5a 1a 02 00 65 04 6a 1c 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | ..........Z...e.j............... |
| 0360 | 00 00 00 00 64 02 64 08 ac 09 ab 02 00 00 00 00 00 00 02 00 65 0a 64 01 64 16 67 02 ab 01 00 00 | ....d.d.............e.d.d.g..... |
| 0380 | 00 00 00 00 64 20 64 17 84 01 ab 00 00 00 00 00 00 00 ab 00 00 00 00 00 00 00 5a 1b 02 00 65 04 | ....d.d...................Z...e. |
| 03a0 | 6a 1c 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 64 02 64 08 ac 09 ab 02 00 00 00 00 | j...................d.d......... |
| 03c0 | 00 00 64 20 64 18 84 01 ab 00 00 00 00 00 00 00 5a 1c 02 00 65 04 6a 1c 00 00 00 00 00 00 00 00 | ..d.d...........Z...e.j......... |
| 03e0 | 00 00 00 00 00 00 00 00 00 00 64 02 64 08 ac 09 ab 02 00 00 00 00 00 00 02 00 65 0a 64 01 ab 01 | ..........d.d.............e.d... |
| 0400 | 00 00 00 00 00 00 64 20 64 19 84 01 ab 00 00 00 00 00 00 00 ab 00 00 00 00 00 00 00 5a 1d 02 00 | ......d.d...................Z... |
| 0420 | 65 04 6a 1c 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 64 02 64 08 ac 09 ab 02 00 00 | e.j...................d.d....... |
| 0440 | 00 00 00 00 02 00 65 0a 64 01 ab 01 00 00 00 00 00 00 64 20 64 1a 84 01 ab 00 00 00 00 00 00 00 | ......e.d.........d.d........... |
| 0460 | ab 00 00 00 00 00 00 00 5a 1e 02 00 65 04 6a 1c 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | ........Z...e.j................. |
| 0480 | 00 00 64 02 64 08 ac 09 ab 02 00 00 00 00 00 00 02 00 65 0a 64 01 64 16 67 02 ab 01 00 00 00 00 | ..d.d.............e.d.d.g....... |
| 04a0 | 00 00 64 20 64 1b 84 01 ab 00 00 00 00 00 00 00 ab 00 00 00 00 00 00 00 5a 1f 02 00 65 04 6a 1c | ..d.d...................Z...e.j. |
| 04c0 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 64 02 64 08 ac 09 ab 02 00 00 00 00 00 00 | ..................d.d........... |
| 04e0 | 64 20 64 1c 84 01 ab 00 00 00 00 00 00 00 5a 20 02 00 65 04 6a 1c 00 00 00 00 00 00 00 00 00 00 | d.d...........Z...e.j........... |
| 0500 | 00 00 00 00 00 00 00 00 64 02 64 08 ac 09 ab 02 00 00 00 00 00 00 64 1d 84 00 ab 00 00 00 00 00 | ........d.d...........d......... |
| 0520 | 00 00 5a 21 02 00 65 04 6a 1c 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 64 02 64 08 | ..Z!..e.j...................d.d. |
| 0540 | ac 09 ab 02 00 00 00 00 00 00 02 00 65 0a 64 01 ab 01 00 00 00 00 00 00 64 20 64 1e 84 01 ab 00 | ............e.d.........d.d..... |
| 0560 | 00 00 00 00 00 00 ab 00 00 00 00 00 00 00 5a 22 02 00 65 04 6a 1c 00 00 00 00 00 00 00 00 00 00 | ..............Z"..e.j........... |
| 0580 | 00 00 00 00 00 00 00 00 64 02 64 08 ac 09 ab 02 00 00 00 00 00 00 64 1f 84 00 ab 00 00 00 00 00 | ........d.d...........d......... |
| 05a0 | 00 00 5a 23 79 02 29 21 61 40 01 00 00 47 65 6e 65 72 61 74 6f 72 73 20 66 6f 72 20 73 6f 6d 65 | ..Z#y.)!a@...Generators.for.some |
| 05c0 | 20 63 6c 61 73 73 69 63 20 67 72 61 70 68 73 2e 0a 0a 54 68 65 20 74 79 70 69 63 61 6c 20 67 72 | .classic.graphs...The.typical.gr |
| 05e0 | 61 70 68 20 62 75 69 6c 64 65 72 20 66 75 6e 63 74 69 6f 6e 20 69 73 20 63 61 6c 6c 65 64 20 61 | aph.builder.function.is.called.a |
| 0600 | 73 20 66 6f 6c 6c 6f 77 73 3a 0a 0a 3e 3e 3e 20 47 20 3d 20 6e 78 2e 63 6f 6d 70 6c 65 74 65 5f | s.follows:..>>>.G.=.nx.complete_ |
| 0620 | 67 72 61 70 68 28 31 30 30 29 0a 0a 72 65 74 75 72 6e 69 6e 67 20 74 68 65 20 63 6f 6d 70 6c 65 | graph(100)..returning.the.comple |
| 0640 | 74 65 20 67 72 61 70 68 20 6f 6e 20 6e 20 6e 6f 64 65 73 20 6c 61 62 65 6c 65 64 20 30 2c 20 2e | te.graph.on.n.nodes.labeled.0,.. |
| 0660 | 2e 2c 20 39 39 0a 61 73 20 61 20 73 69 6d 70 6c 65 20 67 72 61 70 68 2e 20 45 78 63 65 70 74 20 | .,.99.as.a.simple.graph..Except. |
| 0680 | 66 6f 72 20 60 65 6d 70 74 79 5f 67 72 61 70 68 60 2c 20 61 6c 6c 20 74 68 65 20 66 75 6e 63 74 | for.`empty_graph`,.all.the.funct |
| 06a0 | 69 6f 6e 73 0a 69 6e 20 74 68 69 73 20 6d 6f 64 75 6c 65 20 72 65 74 75 72 6e 20 61 20 47 72 61 | ions.in.this.module.return.a.Gra |
| 06c0 | 70 68 20 63 6c 61 73 73 20 28 69 2e 65 2e 20 61 20 73 69 6d 70 6c 65 2c 20 75 6e 64 69 72 65 63 | ph.class.(i.e..a.simple,.undirec |
| 06e0 | 74 65 64 20 67 72 61 70 68 29 2e 0a 0a e9 00 00 00 00 4e 29 01 da 05 47 72 61 70 68 29 01 da 0d | ted.graph)........N)...Graph)... |
| 0700 | 4e 65 74 77 6f 72 6b 58 45 72 72 6f 72 29 02 da 0f 6e 6f 64 65 73 5f 6f 72 5f 6e 75 6d 62 65 72 | NetworkXError)...nodes_or_number |
| 0720 | da 08 70 61 69 72 77 69 73 65 29 15 da 0d 62 61 6c 61 6e 63 65 64 5f 74 72 65 65 da 0d 62 61 72 | ..pairwise)...balanced_tree..bar |
| 0740 | 62 65 6c 6c 5f 67 72 61 70 68 da 0d 62 69 6e 6f 6d 69 61 6c 5f 74 72 65 65 da 0e 63 6f 6d 70 6c | bell_graph..binomial_tree..compl |
| 0760 | 65 74 65 5f 67 72 61 70 68 da 1b 63 6f 6d 70 6c 65 74 65 5f 6d 75 6c 74 69 70 61 72 74 69 74 65 | ete_graph..complete_multipartite |
| 0780 | 5f 67 72 61 70 68 da 15 63 69 72 63 75 6c 61 72 5f 6c 61 64 64 65 72 5f 67 72 61 70 68 da 0f 63 | _graph..circular_ladder_graph..c |
| 07a0 | 69 72 63 75 6c 61 6e 74 5f 67 72 61 70 68 da 0b 63 79 63 6c 65 5f 67 72 61 70 68 da 20 64 6f 72 | irculant_graph..cycle_graph..dor |
| 07c0 | 6f 67 6f 76 74 73 65 76 5f 67 6f 6c 74 73 65 76 5f 6d 65 6e 64 65 73 5f 67 72 61 70 68 da 0b 65 | ogovtsev_goltsev_mendes_graph..e |
| 07e0 | 6d 70 74 79 5f 67 72 61 70 68 da 0e 66 75 6c 6c 5f 72 61 72 79 5f 74 72 65 65 da 0c 6b 6e 65 73 | mpty_graph..full_rary_tree..knes |
| 0800 | 65 72 5f 67 72 61 70 68 da 0c 6c 61 64 64 65 72 5f 67 72 61 70 68 da 0e 6c 6f 6c 6c 69 70 6f 70 | er_graph..ladder_graph..lollipop |
| 0820 | 5f 67 72 61 70 68 da 0a 6e 75 6c 6c 5f 67 72 61 70 68 da 0a 70 61 74 68 5f 67 72 61 70 68 da 0a | _graph..null_graph..path_graph.. |
| 0840 | 73 74 61 72 5f 67 72 61 70 68 da 0d 74 61 64 70 6f 6c 65 5f 67 72 61 70 68 da 0d 74 72 69 76 69 | star_graph..tadpole_graph..trivi |
| 0860 | 61 6c 5f 67 72 61 70 68 da 0b 74 75 72 61 6e 5f 67 72 61 70 68 da 0b 77 68 65 65 6c 5f 67 72 61 | al_graph..turan_graph..wheel_gra |
| 0880 | 70 68 63 02 00 00 00 00 00 00 00 00 00 00 00 05 00 00 00 23 00 00 00 f3 0c 01 00 00 4b 00 01 00 | phc................#........K... |
| 08a0 | 97 00 7c 00 64 01 6b 28 00 00 72 01 79 00 74 01 00 00 00 00 00 00 00 00 74 03 00 00 00 00 00 00 | ..|.d.k(..r.y.t.........t....... |
| 08c0 | 00 00 7c 00 ab 01 00 00 00 00 00 00 ab 01 00 00 00 00 00 00 7d 02 74 05 00 00 00 00 00 00 00 00 | ..|.................}.t......... |
| 08e0 | 7c 02 ab 01 00 00 00 00 00 00 67 01 7d 03 7c 03 72 48 7c 03 6a 07 00 00 00 00 00 00 00 00 00 00 | |.........g.}.|.rH|.j........... |
| 0900 | 00 00 00 00 00 00 00 00 64 01 ab 01 00 00 00 00 00 00 7d 04 74 03 00 00 00 00 00 00 00 00 7c 01 | ........d.........}.t.........|. |
| 0920 | ab 01 00 00 00 00 00 00 44 00 5d 25 00 00 7d 05 09 00 74 05 00 00 00 00 00 00 00 00 7c 02 ab 01 | ........D.]%..}...t.........|... |
| 0940 | 00 00 00 00 00 00 7d 06 7c 03 6a 09 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 06 | ......}.|.j...................|. |
| 0960 | ab 01 00 00 00 00 00 00 01 00 7c 04 7c 06 66 02 96 02 97 01 01 00 8c 27 04 00 7c 03 72 01 8c 47 | ..........|.|.f........'..|.r..G |
| 0980 | 79 00 79 00 23 00 74 0a 00 00 00 00 00 00 00 00 24 00 72 04 01 00 59 00 01 00 8c 11 77 00 78 03 | y.y.#.t.........$.r...Y.....w.x. |
| 09a0 | 59 00 77 01 ad 03 77 01 29 02 4e 72 02 00 00 00 29 06 da 04 69 74 65 72 da 05 72 61 6e 67 65 da | Y.w...w.).Nr....)...iter..range. |
| 09c0 | 04 6e 65 78 74 da 03 70 6f 70 da 06 61 70 70 65 6e 64 da 0d 53 74 6f 70 49 74 65 72 61 74 69 6f | .next..pop..append..StopIteratio |
| 09e0 | 6e 29 07 da 01 6e da 01 72 da 05 6e 6f 64 65 73 da 07 70 61 72 65 6e 74 73 da 06 73 6f 75 72 63 | n)...n..r..nodes..parents..sourc |
| 0a00 | 65 da 01 69 da 06 74 61 72 67 65 74 73 07 00 00 00 20 20 20 20 20 20 20 fa 62 2f 68 6f 6d 65 2f | e..i..targets............b/home/ |
| 0a20 | 62 6c 61 63 6b 68 61 6f 2f 75 69 75 63 2d 63 6f 75 72 73 65 2d 67 72 61 70 68 2f 2e 76 65 6e 76 | blackhao/uiuc-course-graph/.venv |
| 0a40 | 2f 6c 69 62 2f 70 79 74 68 6f 6e 33 2e 31 32 2f 73 69 74 65 2d 70 61 63 6b 61 67 65 73 2f 6e 65 | /lib/python3.12/site-packages/ne |
| 0a60 | 74 77 6f 72 6b 78 2f 67 65 6e 65 72 61 74 6f 72 73 2f 63 6c 61 73 73 69 63 2e 70 79 da 0b 5f 74 | tworkx/generators/classic.py.._t |
| 0a80 | 72 65 65 5f 65 64 67 65 73 72 2b 00 00 00 33 00 00 00 73 89 00 00 00 e8 00 f8 80 00 d8 07 08 88 | ree_edgesr+...3...s............. |
| 0aa0 | 41 82 76 d8 08 0e f4 06 00 0d 11 94 15 90 71 93 18 8b 4e 80 45 dc 0f 13 90 45 8b 7b 88 6d 80 47 | A.v...........q...N.E....E.{.m.G |
| 0ac0 | d9 0a 11 d8 11 18 97 1b 91 1b 98 51 93 1e 88 06 dc 11 16 90 71 93 18 f2 00 06 09 16 88 41 f0 02 | ...........Q........q........A.. |
| 0ae0 | 05 0d 16 dc 19 1d 98 65 9b 1b 90 06 d8 10 17 97 0e 91 0e 98 76 d4 10 26 d8 16 1c 98 66 90 6e d3 | .......e............v..&....f.n. |
| 0b00 | 10 24 f0 09 06 09 16 f4 05 00 0b 12 f8 f4 0e 00 14 21 f2 00 01 0d 16 da 10 15 f0 03 01 0d 16 fc | .$...............!.............. |
| 0b20 | 73 30 00 00 00 82 41 08 42 04 01 c1 0b 22 41 34 02 c1 2d 04 42 04 01 c1 32 02 42 04 01 c1 34 09 | s0....A.B...."A4..-.B...2.B...4. |
| 0b40 | 42 01 05 c1 3d 03 42 04 01 c2 00 01 42 01 05 c2 01 03 42 04 01 54 29 02 da 06 67 72 61 70 68 73 | B...=.B.....B.....B..T)...graphs |
| 0b60 | da 0d 72 65 74 75 72 6e 73 5f 67 72 61 70 68 63 03 00 00 00 00 00 00 00 00 00 00 00 06 00 00 00 | ..returns_graphc................ |
| 0b80 | 03 00 00 00 f3 54 00 00 00 97 00 74 01 00 00 00 00 00 00 00 00 7c 01 7c 02 ab 02 00 00 00 00 00 | .....T.....t.........|.|........ |
| 0ba0 | 00 7d 03 7c 03 6a 03 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 74 05 00 00 00 00 00 | .}.|.j...................t...... |
| 0bc0 | 00 00 00 7c 01 7c 00 ab 02 00 00 00 00 00 00 ab 01 00 00 00 00 00 00 01 00 7c 03 53 00 29 01 61 | ...|.|...................|.S.).a |
| 0be0 | 9a 03 00 00 43 72 65 61 74 65 73 20 61 20 66 75 6c 6c 20 72 2d 61 72 79 20 74 72 65 65 20 6f 66 | ....Creates.a.full.r-ary.tree.of |
| 0c00 | 20 60 6e 60 20 6e 6f 64 65 73 2e 0a 0a 20 20 20 20 53 6f 6d 65 74 69 6d 65 73 20 63 61 6c 6c 65 | .`n`.nodes.......Sometimes.calle |
| 0c20 | 64 20 61 20 6b 2d 61 72 79 2c 20 6e 2d 61 72 79 2c 20 6f 72 20 6d 2d 61 72 79 20 74 72 65 65 2e | d.a.k-ary,.n-ary,.or.m-ary.tree. |
| 0c40 | 0a 20 20 20 20 22 2e 2e 2e 20 61 6c 6c 20 6e 6f 6e 2d 6c 65 61 66 20 6e 6f 64 65 73 20 68 61 76 | ....."....all.non-leaf.nodes.hav |
| 0c60 | 65 20 65 78 61 63 74 6c 79 20 72 20 63 68 69 6c 64 72 65 6e 20 61 6e 64 20 61 6c 6c 20 6c 65 76 | e.exactly.r.children.and.all.lev |
| 0c80 | 65 6c 73 0a 20 20 20 20 61 72 65 20 66 75 6c 6c 20 65 78 63 65 70 74 20 66 6f 72 20 73 6f 6d 65 | els.....are.full.except.for.some |
| 0ca0 | 20 72 69 67 68 74 6d 6f 73 74 20 70 6f 73 69 74 69 6f 6e 20 6f 66 20 74 68 65 20 62 6f 74 74 6f | .rightmost.position.of.the.botto |
| 0cc0 | 6d 20 6c 65 76 65 6c 0a 20 20 20 20 28 69 66 20 61 20 6c 65 61 66 20 61 74 20 74 68 65 20 62 6f | m.level.....(if.a.leaf.at.the.bo |
| 0ce0 | 74 74 6f 6d 20 6c 65 76 65 6c 20 69 73 20 6d 69 73 73 69 6e 67 2c 20 74 68 65 6e 20 73 6f 20 61 | ttom.level.is.missing,.then.so.a |
| 0d00 | 72 65 20 61 6c 6c 20 6f 66 20 74 68 65 0a 20 20 20 20 6c 65 61 76 65 73 20 74 6f 20 69 74 73 20 | re.all.of.the.....leaves.to.its. |
| 0d20 | 72 69 67 68 74 2e 22 20 5b 31 5d 5f 0a 0a 20 20 20 20 2e 2e 20 70 6c 6f 74 3a 3a 0a 0a 20 20 20 | right.".[1]_.........plot::..... |
| 0d40 | 20 20 20 20 20 3e 3e 3e 20 6e 78 2e 64 72 61 77 28 6e 78 2e 66 75 6c 6c 5f 72 61 72 79 5f 74 72 | .....>>>.nx.draw(nx.full_rary_tr |
| 0d60 | 65 65 28 32 2c 20 31 30 29 29 0a 0a 20 20 20 20 50 61 72 61 6d 65 74 65 72 73 0a 20 20 20 20 2d | ee(2,.10))......Parameters.....- |
| 0d80 | 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 72 20 3a 20 69 6e 74 0a 20 20 20 20 20 20 20 20 62 72 | ---------.....r.:.int.........br |
| 0da0 | 61 6e 63 68 69 6e 67 20 66 61 63 74 6f 72 20 6f 66 20 74 68 65 20 74 72 65 65 0a 20 20 20 20 6e | anching.factor.of.the.tree.....n |
| 0dc0 | 20 3a 20 69 6e 74 0a 20 20 20 20 20 20 20 20 4e 75 6d 62 65 72 20 6f 66 20 6e 6f 64 65 73 20 69 | .:.int.........Number.of.nodes.i |
| 0de0 | 6e 20 74 68 65 20 74 72 65 65 0a 20 20 20 20 63 72 65 61 74 65 5f 75 73 69 6e 67 20 3a 20 4e 65 | n.the.tree.....create_using.:.Ne |
| 0e00 | 74 77 6f 72 6b 58 20 67 72 61 70 68 20 63 6f 6e 73 74 72 75 63 74 6f 72 2c 20 6f 70 74 69 6f 6e | tworkX.graph.constructor,.option |
| 0e20 | 61 6c 20 28 64 65 66 61 75 6c 74 3d 6e 78 2e 47 72 61 70 68 29 0a 20 20 20 20 20 20 20 47 72 61 | al.(default=nx.Graph)........Gra |
| 0e40 | 70 68 20 74 79 70 65 20 74 6f 20 63 72 65 61 74 65 2e 20 49 66 20 67 72 61 70 68 20 69 6e 73 74 | ph.type.to.create..If.graph.inst |
| 0e60 | 61 6e 63 65 2c 20 74 68 65 6e 20 63 6c 65 61 72 65 64 20 62 65 66 6f 72 65 20 70 6f 70 75 6c 61 | ance,.then.cleared.before.popula |
| 0e80 | 74 65 64 2e 0a 0a 20 20 20 20 52 65 74 75 72 6e 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 0a 20 20 | ted.......Returns.....-------... |
| 0ea0 | 20 20 47 20 3a 20 6e 65 74 77 6f 72 6b 78 20 47 72 61 70 68 0a 20 20 20 20 20 20 20 20 41 6e 20 | ..G.:.networkx.Graph.........An. |
| 0ec0 | 72 2d 61 72 79 20 74 72 65 65 20 77 69 74 68 20 6e 20 6e 6f 64 65 73 0a 0a 20 20 20 20 52 65 66 | r-ary.tree.with.n.nodes......Ref |
| 0ee0 | 65 72 65 6e 63 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 2e 2e 20 5b 31 | erences.....----------........[1 |
| 0f00 | 5d 20 41 6e 20 69 6e 74 72 6f 64 75 63 74 69 6f 6e 20 74 6f 20 64 61 74 61 20 73 74 72 75 63 74 | ].An.introduction.to.data.struct |
| 0f20 | 75 72 65 73 20 61 6e 64 20 61 6c 67 6f 72 69 74 68 6d 73 2c 0a 20 20 20 20 20 20 20 20 20 20 20 | ures.and.algorithms,............ |
| 0f40 | 4a 61 6d 65 73 20 41 6e 64 72 65 77 20 53 74 6f 72 65 72 2c 20 20 42 69 72 6b 68 61 75 73 65 72 | James.Andrew.Storer,..Birkhauser |
| 0f60 | 20 42 6f 73 74 6f 6e 20 32 30 30 31 2c 20 28 70 61 67 65 20 32 32 35 29 2e 0a 20 20 20 20 29 03 | .Boston.2001,.(page.225)......). |
| 0f80 | 72 10 00 00 00 da 0e 61 64 64 5f 65 64 67 65 73 5f 66 72 6f 6d 72 2b 00 00 00 29 04 72 24 00 00 | r......add_edges_fromr+...).r$.. |
| 0fa0 | 00 72 23 00 00 00 da 0c 63 72 65 61 74 65 5f 75 73 69 6e 67 da 01 47 73 04 00 00 00 20 20 20 20 | .r#.....create_using..Gs........ |
| 0fc0 | 72 2a 00 00 00 72 11 00 00 00 72 11 00 00 00 45 00 00 00 73 2b 00 00 00 80 00 f4 42 01 00 09 14 | r*...r....r....E...s+......B.... |
| 0fe0 | 90 41 90 7c d3 08 24 80 41 d8 04 05 d7 04 14 d1 04 14 94 5b a0 11 a0 41 d3 15 26 d4 04 27 d8 0b | .A.|..$.A..........[...A..&..'.. |
| 1000 | 0c 80 48 f3 00 00 00 00 63 02 00 00 00 00 00 00 00 00 00 00 00 07 00 00 00 03 00 00 00 f3 80 01 | ..H.....c....................... |
| 1020 | 00 00 87 01 87 04 87 05 97 00 7c 00 64 01 6b 1a 00 00 72 0b 74 01 00 00 00 00 00 00 00 00 64 02 | ..........|.d.k...r.t.........d. |
| 1040 | ab 01 00 00 00 00 00 00 82 01 89 01 64 01 6b 1a 00 00 73 05 89 01 7c 00 6b 44 00 00 72 0b 74 01 | ............d.k...s...|.kD..r.t. |
| 1060 | 00 00 00 00 00 00 00 00 64 03 ab 01 00 00 00 00 00 00 82 01 74 03 00 00 00 00 00 00 00 00 6a 04 | ........d...........t.........j. |
| 1080 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ab 00 00 00 00 00 00 00 7d 02 74 07 00 00 | ..........................}.t... |
| 10a0 | 00 00 00 00 00 00 74 09 00 00 00 00 00 00 00 00 6a 0a 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | ......t.........j............... |
| 10c0 | 00 00 00 00 74 0d 00 00 00 00 00 00 00 00 7c 00 ab 01 00 00 00 00 00 00 89 01 ab 02 00 00 00 00 | ....t.........|................. |
| 10e0 | 00 00 ab 01 00 00 00 00 00 00 7d 03 64 04 89 01 7a 05 00 00 7c 00 6b 44 00 00 72 11 7c 02 6a 0f | ..........}.d...z...|.kD..r.|.j. |
| 1100 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 03 ab 01 00 00 00 00 00 00 01 00 74 11 | ..................|...........t. |
| 1120 | 00 00 00 00 00 00 00 00 74 0d 00 00 00 00 00 00 00 00 7c 00 ab 01 00 00 00 00 00 00 ab 01 00 00 | ........t.........|............. |
| 1140 | 00 00 00 00 8a 05 74 08 00 00 00 00 00 00 00 00 6a 0a 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | ......t.........j............... |
| 1160 | 00 00 00 00 8a 04 7c 02 6a 13 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 88 04 88 01 | ......|.j....................... |
| 1180 | 88 05 66 03 64 05 84 08 7c 03 44 00 ab 00 00 00 00 00 00 00 ab 01 00 00 00 00 00 00 01 00 7c 02 | ..f.d...|.D...................|. |
| 11a0 | 53 00 29 06 61 8b 02 00 00 52 65 74 75 72 6e 73 20 74 68 65 20 4b 6e 65 73 65 72 20 47 72 61 70 | S.).a....Returns.the.Kneser.Grap |
| 11c0 | 68 20 77 69 74 68 20 70 61 72 61 6d 65 74 65 72 73 20 60 6e 60 20 61 6e 64 20 60 6b 60 2e 0a 0a | h.with.parameters.`n`.and.`k`... |
| 11e0 | 20 20 20 20 54 68 65 20 4b 6e 65 73 65 72 20 47 72 61 70 68 20 68 61 73 20 6e 6f 64 65 73 20 74 | ....The.Kneser.Graph.has.nodes.t |
| 1200 | 68 61 74 20 61 72 65 20 6b 2d 74 75 70 6c 65 73 20 28 73 75 62 73 65 74 73 29 20 6f 66 20 74 68 | hat.are.k-tuples.(subsets).of.th |
| 1220 | 65 20 69 6e 74 65 67 65 72 73 0a 20 20 20 20 62 65 74 77 65 65 6e 20 30 20 61 6e 64 20 60 60 6e | e.integers.....between.0.and.``n |
| 1240 | 2d 31 60 60 2e 20 4e 6f 64 65 73 20 61 72 65 20 61 64 6a 61 63 65 6e 74 20 69 66 20 74 68 65 69 | -1``..Nodes.are.adjacent.if.thei |
| 1260 | 72 20 63 6f 72 72 65 73 70 6f 6e 64 69 6e 67 20 73 65 74 73 20 61 72 65 20 64 69 73 6a 6f 69 6e | r.corresponding.sets.are.disjoin |
| 1280 | 74 2e 0a 0a 20 20 20 20 50 61 72 61 6d 65 74 65 72 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d | t.......Parameters.....--------- |
| 12a0 | 2d 0a 20 20 20 20 6e 3a 20 69 6e 74 0a 20 20 20 20 20 20 20 20 4e 75 6d 62 65 72 20 6f 66 20 69 | -.....n:.int.........Number.of.i |
| 12c0 | 6e 74 65 67 65 72 73 20 66 72 6f 6d 20 77 68 69 63 68 20 74 6f 20 6d 61 6b 65 20 6e 6f 64 65 20 | ntegers.from.which.to.make.node. |
| 12e0 | 73 75 62 73 65 74 73 2e 0a 20 20 20 20 20 20 20 20 53 75 62 73 65 74 73 20 61 72 65 20 64 72 61 | subsets..........Subsets.are.dra |
| 1300 | 77 6e 20 66 72 6f 6d 20 60 60 73 65 74 28 72 61 6e 67 65 28 6e 29 29 60 60 2e 0a 20 20 20 20 6b | wn.from.``set(range(n))``......k |
| 1320 | 3a 20 69 6e 74 0a 20 20 20 20 20 20 20 20 53 69 7a 65 20 6f 66 20 74 68 65 20 73 75 62 73 65 74 | :.int.........Size.of.the.subset |
| 1340 | 73 2e 0a 0a 20 20 20 20 52 65 74 75 72 6e 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 | s.......Returns.....-------..... |
| 1360 | 47 20 3a 20 4e 65 74 77 6f 72 6b 58 20 47 72 61 70 68 0a 0a 20 20 20 20 45 78 61 6d 70 6c 65 73 | G.:.NetworkX.Graph......Examples |
| 1380 | 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 3e 3e 3e 20 47 20 3d 20 6e 78 2e 6b 6e 65 | .....--------.....>>>.G.=.nx.kne |
| 13a0 | 73 65 72 5f 67 72 61 70 68 28 35 2c 20 32 29 0a 20 20 20 20 3e 3e 3e 20 47 2e 6e 75 6d 62 65 72 | ser_graph(5,.2).....>>>.G.number |
| 13c0 | 5f 6f 66 5f 6e 6f 64 65 73 28 29 0a 20 20 20 20 31 30 0a 20 20 20 20 3e 3e 3e 20 47 2e 6e 75 6d | _of_nodes().....10.....>>>.G.num |
| 13e0 | 62 65 72 5f 6f 66 5f 65 64 67 65 73 28 29 0a 20 20 20 20 31 35 0a 20 20 20 20 3e 3e 3e 20 6e 78 | ber_of_edges().....15.....>>>.nx |
| 1400 | 2e 69 73 5f 69 73 6f 6d 6f 72 70 68 69 63 28 47 2c 20 6e 78 2e 70 65 74 65 72 73 65 6e 5f 67 72 | .is_isomorphic(G,.nx.petersen_gr |
| 1420 | 61 70 68 28 29 29 0a 20 20 20 20 54 72 75 65 0a 20 20 20 20 72 02 00 00 00 7a 1d 6e 20 73 68 6f | aph()).....True.....r....z.n.sho |
| 1440 | 75 6c 64 20 62 65 20 67 72 65 61 74 65 72 20 74 68 61 6e 20 7a 65 72 6f 7a 30 6b 20 73 68 6f 75 | uld.be.greater.than.zeroz0k.shou |
| 1460 | 6c 64 20 62 65 20 67 72 65 61 74 65 72 20 74 68 61 6e 20 7a 65 72 6f 20 61 6e 64 20 73 6d 61 6c | ld.be.greater.than.zero.and.smal |
| 1480 | 6c 65 72 20 74 68 61 6e 20 6e e9 02 00 00 00 63 01 00 00 00 00 00 00 00 00 00 00 00 07 00 00 00 | ler.than.n.....c................ |
| 14a0 | 33 00 00 00 f3 5a 00 00 00 95 03 4b 00 01 00 97 00 7c 00 5d 22 00 00 7d 01 02 00 89 03 89 05 74 | 3....Z.....K.....|.]"..}.......t |
| 14c0 | 01 00 00 00 00 00 00 00 00 7c 01 ab 01 00 00 00 00 00 00 7a 0a 00 00 89 04 ab 02 00 00 00 00 00 | .........|.........z............ |
| 14e0 | 00 44 00 5d 08 00 00 7d 02 7c 01 7c 02 66 02 96 01 97 01 01 00 8c 0a 04 00 8c 24 04 00 79 00 ad | .D.]...}.|.|.f............$..y.. |
| 1500 | 03 77 01 a9 01 4e 29 01 da 03 73 65 74 29 06 da 02 2e 30 da 01 73 da 01 74 da 04 63 6f 6d 62 da | .w...N)...set)....0..s..t..comb. |
| 1520 | 01 6b da 08 75 6e 69 76 65 72 73 65 73 06 00 00 00 20 20 20 80 80 80 72 2a 00 00 00 fa 09 3c 67 | .k..universes..........r*.....<g |
| 1540 | 65 6e 65 78 70 72 3e 7a 1f 6b 6e 65 73 65 72 5f 67 72 61 70 68 2e 3c 6c 6f 63 61 6c 73 3e 2e 3c | enexpr>z.kneser_graph.<locals>.< |
| 1560 | 67 65 6e 65 78 70 72 3e 96 00 00 00 73 31 00 00 00 f8 e8 00 f8 80 00 d2 14 51 a0 01 b1 64 b8 38 | genexpr>....s1...........Q...d.8 |
| 1580 | c4 63 c8 21 c3 66 d1 3b 4c c8 61 d3 36 50 d2 14 51 b0 11 90 61 98 11 94 56 d0 14 51 90 56 d1 14 | .c.!.f.;L.a.6P..Q...a...V..Q.V.. |
| 15a0 | 51 f9 f3 04 00 00 00 83 28 2b 01 29 0a 72 04 00 00 00 da 02 6e 78 72 03 00 00 00 da 04 6c 69 73 | Q.......(+.).r......nxr......lis |
| 15c0 | 74 da 09 69 74 65 72 74 6f 6f 6c 73 da 0c 63 6f 6d 62 69 6e 61 74 69 6f 6e 73 72 1e 00 00 00 da | t..itertools..combinationsr..... |
| 15e0 | 0e 61 64 64 5f 6e 6f 64 65 73 5f 66 72 6f 6d 72 37 00 00 00 72 2f 00 00 00 29 06 72 23 00 00 00 | .add_nodes_fromr7...r/...).r#... |
| 1600 | 72 3c 00 00 00 72 31 00 00 00 da 07 73 75 62 73 65 74 73 72 3b 00 00 00 72 3d 00 00 00 73 06 00 | r<...r1.....subsetsr;...r=...s.. |
| 1620 | 00 00 20 60 20 20 40 40 72 2a 00 00 00 72 12 00 00 00 72 12 00 00 00 6b 00 00 00 73 a1 00 00 00 | ...`..@@r*...r....r....k...s.... |
| 1640 | fa 80 00 f0 3a 00 08 09 88 41 82 76 dc 0e 1b d0 1c 3b d3 0e 3c d0 08 3c d8 07 08 88 41 82 76 90 | ....:....A.v.....;..<..<....A.v. |
| 1660 | 11 90 51 92 15 dc 0e 1b d0 1c 4e d3 0e 4f d0 08 4f e4 08 0a 8f 08 89 08 8b 0a 80 41 e4 0e 12 94 | ..Q.......N..O..O..........A.... |
| 1680 | 39 d7 13 29 d1 13 29 ac 25 b0 01 ab 28 b0 41 d3 13 36 d3 0e 37 80 47 e0 07 08 88 31 81 75 88 71 | 9..)..).%...(.A..6..7.G....1.u.q |
| 16a0 | 82 79 d8 08 09 d7 08 18 d1 08 18 98 17 d4 08 21 e4 0f 12 94 35 98 11 93 38 8b 7d 80 48 dc 0b 14 | .y.............!....5...8.}.H... |
| 16c0 | d7 0b 21 d1 0b 21 80 44 d8 04 05 d7 04 14 d1 04 14 d5 14 51 a0 57 d4 14 51 d4 04 51 d8 0b 0c 80 | ..!..!.D...........Q.W..Q..Q.... |
| 16e0 | 48 72 32 00 00 00 63 03 00 00 00 00 00 00 00 00 00 00 00 05 00 00 00 03 00 00 00 f3 56 00 00 00 | Hr2...c.....................V... |
| 1700 | 97 00 7c 00 64 01 6b 28 00 00 72 06 7c 01 64 01 7a 00 00 00 7d 03 6e 11 64 01 7c 00 7c 01 64 01 | ..|.d.k(..r.|.d.z...}.n.d.|.|.d. |
| 1720 | 7a 00 00 00 7a 08 00 00 7a 0a 00 00 64 01 7c 00 7a 0a 00 00 7a 02 00 00 7d 03 74 01 00 00 00 00 | z...z...z...d.|.z...z...}.t..... |
| 1740 | 00 00 00 00 7c 00 7c 03 7c 02 ac 02 ab 03 00 00 00 00 00 00 53 00 29 03 61 43 03 00 00 52 65 74 | ....|.|.|...........S.).aC...Ret |
| 1760 | 75 72 6e 73 20 74 68 65 20 70 65 72 66 65 63 74 6c 79 20 62 61 6c 61 6e 63 65 64 20 60 72 60 2d | urns.the.perfectly.balanced.`r`- |
| 1780 | 61 72 79 20 74 72 65 65 20 6f 66 20 68 65 69 67 68 74 20 60 68 60 2e 0a 0a 20 20 20 20 2e 2e 20 | ary.tree.of.height.`h`.......... |
| 17a0 | 70 6c 6f 74 3a 3a 0a 0a 20 20 20 20 20 20 20 20 3e 3e 3e 20 6e 78 2e 64 72 61 77 28 6e 78 2e 62 | plot::..........>>>.nx.draw(nx.b |
| 17c0 | 61 6c 61 6e 63 65 64 5f 74 72 65 65 28 32 2c 20 33 29 29 0a 0a 20 20 20 20 50 61 72 61 6d 65 74 | alanced_tree(2,.3))......Paramet |
| 17e0 | 65 72 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 72 20 3a 20 69 6e 74 0a 20 | ers.....----------.....r.:.int.. |
| 1800 | 20 20 20 20 20 20 20 42 72 61 6e 63 68 69 6e 67 20 66 61 63 74 6f 72 20 6f 66 20 74 68 65 20 74 | .......Branching.factor.of.the.t |
| 1820 | 72 65 65 3b 20 65 61 63 68 20 6e 6f 64 65 20 77 69 6c 6c 20 68 61 76 65 20 60 72 60 0a 20 20 20 | ree;.each.node.will.have.`r`.... |
| 1840 | 20 20 20 20 20 63 68 69 6c 64 72 65 6e 2e 0a 0a 20 20 20 20 68 20 3a 20 69 6e 74 0a 20 20 20 20 | .....children.......h.:.int..... |
| 1860 | 20 20 20 20 48 65 69 67 68 74 20 6f 66 20 74 68 65 20 74 72 65 65 2e 0a 0a 20 20 20 20 63 72 65 | ....Height.of.the.tree.......cre |
| 1880 | 61 74 65 5f 75 73 69 6e 67 20 3a 20 4e 65 74 77 6f 72 6b 58 20 67 72 61 70 68 20 63 6f 6e 73 74 | ate_using.:.NetworkX.graph.const |
| 18a0 | 72 75 63 74 6f 72 2c 20 6f 70 74 69 6f 6e 61 6c 20 28 64 65 66 61 75 6c 74 3d 6e 78 2e 47 72 61 | ructor,.optional.(default=nx.Gra |
| 18c0 | 70 68 29 0a 20 20 20 20 20 20 20 47 72 61 70 68 20 74 79 70 65 20 74 6f 20 63 72 65 61 74 65 2e | ph)........Graph.type.to.create. |
| 18e0 | 20 49 66 20 67 72 61 70 68 20 69 6e 73 74 61 6e 63 65 2c 20 74 68 65 6e 20 63 6c 65 61 72 65 64 | .If.graph.instance,.then.cleared |
| 1900 | 20 62 65 66 6f 72 65 20 70 6f 70 75 6c 61 74 65 64 2e 0a 0a 20 20 20 20 52 65 74 75 72 6e 73 0a | .before.populated.......Returns. |
| 1920 | 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 47 20 3a 20 4e 65 74 77 6f 72 6b 58 20 67 72 61 | ....-------.....G.:.NetworkX.gra |
| 1940 | 70 68 0a 20 20 20 20 20 20 20 20 41 20 62 61 6c 61 6e 63 65 64 20 60 72 60 2d 61 72 79 20 74 72 | ph.........A.balanced.`r`-ary.tr |
| 1960 | 65 65 20 6f 66 20 68 65 69 67 68 74 20 60 68 60 2e 0a 0a 20 20 20 20 4e 6f 74 65 73 0a 20 20 20 | ee.of.height.`h`.......Notes.... |
| 1980 | 20 2d 2d 2d 2d 2d 0a 20 20 20 20 54 68 69 73 20 69 73 20 74 68 65 20 72 6f 6f 74 65 64 20 74 72 | .-----.....This.is.the.rooted.tr |
| 19a0 | 65 65 20 77 68 65 72 65 20 61 6c 6c 20 6c 65 61 76 65 73 20 61 72 65 20 61 74 20 64 69 73 74 61 | ee.where.all.leaves.are.at.dista |
| 19c0 | 6e 63 65 20 60 68 60 20 66 72 6f 6d 0a 20 20 20 20 74 68 65 20 72 6f 6f 74 2e 20 54 68 65 20 72 | nce.`h`.from.....the.root..The.r |
| 19e0 | 6f 6f 74 20 68 61 73 20 64 65 67 72 65 65 20 60 72 60 20 61 6e 64 20 61 6c 6c 20 6f 74 68 65 72 | oot.has.degree.`r`.and.all.other |
| 1a00 | 20 69 6e 74 65 72 6e 61 6c 20 6e 6f 64 65 73 0a 20 20 20 20 68 61 76 65 20 64 65 67 72 65 65 20 | .internal.nodes.....have.degree. |
| 1a20 | 60 72 20 2b 20 31 60 2e 0a 0a 20 20 20 20 4e 6f 64 65 20 6c 61 62 65 6c 73 20 61 72 65 20 69 6e | `r.+.1`.......Node.labels.are.in |
| 1a40 | 74 65 67 65 72 73 2c 20 73 74 61 72 74 69 6e 67 20 66 72 6f 6d 20 7a 65 72 6f 2e 0a 0a 20 20 20 | tegers,.starting.from.zero...... |
| 1a60 | 20 41 20 62 61 6c 61 6e 63 65 64 20 74 72 65 65 20 69 73 20 61 6c 73 6f 20 6b 6e 6f 77 6e 20 61 | .A.balanced.tree.is.also.known.a |
| 1a80 | 73 20 61 20 2a 63 6f 6d 70 6c 65 74 65 20 72 2d 61 72 79 20 74 72 65 65 2a 2e 0a 0a 20 20 20 20 | s.a.*complete.r-ary.tree*....... |
| 1aa0 | e9 01 00 00 00 29 01 72 30 00 00 00 29 01 72 11 00 00 00 29 04 72 24 00 00 00 da 01 68 72 30 00 | .....).r0...).r....).r$.....hr0. |
| 1ac0 | 00 00 72 23 00 00 00 73 04 00 00 00 20 20 20 20 72 2a 00 00 00 72 07 00 00 00 72 07 00 00 00 9a | ..r#...s........r*...r....r..... |
| 1ae0 | 00 00 00 73 41 00 00 00 80 00 f0 52 01 00 08 09 88 41 82 76 d8 0c 0d 90 01 89 45 89 01 f0 08 00 | ...sA......R.....A.v......E..... |
| 1b00 | 0e 0f 90 11 90 71 98 31 91 75 91 1c d1 0d 1d a0 31 a0 71 a1 35 d1 0c 29 88 01 dc 0b 19 98 21 98 | .....q.1.u......1.q.5..)......!. |
| 1b20 | 51 a8 5c d4 0b 3a d0 04 3a 72 32 00 00 00 63 03 00 00 00 00 00 00 00 00 00 00 00 09 00 00 00 03 | Q.\..:..:r2...c................. |
| 1b40 | 00 00 00 f3 f8 01 00 00 87 00 87 01 97 00 89 00 64 01 6b 02 00 00 72 0b 74 01 00 00 00 00 00 00 | ................d.k...r.t....... |
| 1b60 | 00 00 64 02 ab 01 00 00 00 00 00 00 82 01 89 01 64 03 6b 02 00 00 72 0b 74 01 00 00 00 00 00 00 | ..d.............d.k...r.t....... |
| 1b80 | 00 00 64 04 ab 01 00 00 00 00 00 00 82 01 74 03 00 00 00 00 00 00 00 00 89 00 7c 02 ab 02 00 00 | ..d...........t...........|..... |
| 1ba0 | 00 00 00 00 7d 03 7c 03 6a 05 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ab 00 00 00 | ....}.|.j....................... |
| 1bc0 | 00 00 00 00 72 0b 74 01 00 00 00 00 00 00 00 00 64 05 ab 01 00 00 00 00 00 00 82 01 7c 03 6a 07 | ....r.t.........d...........|.j. |
| 1be0 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 74 09 00 00 00 00 00 00 00 00 89 00 89 00 | ..................t............. |
| 1c00 | 89 01 7a 00 00 00 64 06 7a 0a 00 00 ab 02 00 00 00 00 00 00 ab 01 00 00 00 00 00 00 01 00 89 01 | ..z...d.z....................... |
| 1c20 | 64 06 6b 44 00 00 72 27 7c 03 6a 0b 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 74 0d | d.kD..r'|.j...................t. |
| 1c40 | 00 00 00 00 00 00 00 00 74 09 00 00 00 00 00 00 00 00 89 00 89 00 89 01 7a 00 00 00 ab 02 00 00 | ........t...............z....... |
| 1c60 | 00 00 00 00 ab 01 00 00 00 00 00 00 ab 01 00 00 00 00 00 00 01 00 7c 03 6a 0b 00 00 00 00 00 00 | ......................|.j....... |
| 1c80 | 00 00 00 00 00 00 00 00 00 00 00 00 88 00 88 01 66 02 64 07 84 08 74 09 00 00 00 00 00 00 00 00 | ................f.d...t......... |
| 1ca0 | 89 00 89 01 7a 00 00 00 64 01 89 00 7a 05 00 00 89 01 7a 00 00 00 ab 02 00 00 00 00 00 00 44 00 | ....z...d...z.....z...........D. |
| 1cc0 | ab 00 00 00 00 00 00 00 ab 01 00 00 00 00 00 00 01 00 7c 03 6a 0f 00 00 00 00 00 00 00 00 00 00 | ..................|.j........... |
| 1ce0 | 00 00 00 00 00 00 00 00 89 00 64 06 7a 0a 00 00 89 00 ab 02 00 00 00 00 00 00 01 00 89 01 64 03 | ..........d.z.................d. |
| 1d00 | 6b 44 00 00 72 1b 7c 03 6a 0f 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 89 00 89 01 | kD..r.|.j....................... |
| 1d20 | 7a 00 00 00 64 06 7a 0a 00 00 89 00 89 01 7a 00 00 00 ab 02 00 00 00 00 00 00 01 00 7c 03 53 00 | z...d.z.......z.............|.S. |
| 1d40 | 29 08 61 92 04 00 00 52 65 74 75 72 6e 73 20 74 68 65 20 42 61 72 62 65 6c 6c 20 47 72 61 70 68 | ).a....Returns.the.Barbell.Graph |
| 1d60 | 3a 20 74 77 6f 20 63 6f 6d 70 6c 65 74 65 20 67 72 61 70 68 73 20 63 6f 6e 6e 65 63 74 65 64 20 | :.two.complete.graphs.connected. |
| 1d80 | 62 79 20 61 20 70 61 74 68 2e 0a 0a 20 20 20 20 2e 2e 20 70 6c 6f 74 3a 3a 0a 0a 20 20 20 20 20 | by.a.path..........plot::....... |
| 1da0 | 20 20 20 3e 3e 3e 20 6e 78 2e 64 72 61 77 28 6e 78 2e 62 61 72 62 65 6c 6c 5f 67 72 61 70 68 28 | ...>>>.nx.draw(nx.barbell_graph( |
| 1dc0 | 34 2c 20 32 29 29 0a 0a 20 20 20 20 50 61 72 61 6d 65 74 65 72 73 0a 20 20 20 20 2d 2d 2d 2d 2d | 4,.2))......Parameters.....----- |
| 1de0 | 2d 2d 2d 2d 2d 0a 20 20 20 20 6d 31 20 3a 20 69 6e 74 0a 20 20 20 20 20 20 20 20 53 69 7a 65 20 | -----.....m1.:.int.........Size. |
| 1e00 | 6f 66 20 74 68 65 20 6c 65 66 74 20 61 6e 64 20 72 69 67 68 74 20 62 61 72 62 65 6c 6c 73 2c 20 | of.the.left.and.right.barbells,. |
| 1e20 | 6d 75 73 74 20 62 65 20 67 72 65 61 74 65 72 20 74 68 61 6e 20 32 2e 0a 0a 20 20 20 20 6d 32 20 | must.be.greater.than.2.......m2. |
| 1e40 | 3a 20 69 6e 74 0a 20 20 20 20 20 20 20 20 4c 65 6e 67 74 68 20 6f 66 20 74 68 65 20 70 61 74 68 | :.int.........Length.of.the.path |
| 1e60 | 20 63 6f 6e 6e 65 63 74 69 6e 67 20 74 68 65 20 62 61 72 62 65 6c 6c 73 2e 0a 0a 20 20 20 20 63 | .connecting.the.barbells.......c |
| 1e80 | 72 65 61 74 65 5f 75 73 69 6e 67 20 3a 20 4e 65 74 77 6f 72 6b 58 20 67 72 61 70 68 20 63 6f 6e | reate_using.:.NetworkX.graph.con |
| 1ea0 | 73 74 72 75 63 74 6f 72 2c 20 6f 70 74 69 6f 6e 61 6c 20 28 64 65 66 61 75 6c 74 3d 6e 78 2e 47 | structor,.optional.(default=nx.G |
| 1ec0 | 72 61 70 68 29 0a 20 20 20 20 20 20 20 47 72 61 70 68 20 74 79 70 65 20 74 6f 20 63 72 65 61 74 | raph)........Graph.type.to.creat |
| 1ee0 | 65 2e 20 49 66 20 67 72 61 70 68 20 69 6e 73 74 61 6e 63 65 2c 20 74 68 65 6e 20 63 6c 65 61 72 | e..If.graph.instance,.then.clear |
| 1f00 | 65 64 20 62 65 66 6f 72 65 20 70 6f 70 75 6c 61 74 65 64 2e 0a 20 20 20 20 20 20 20 4f 6e 6c 79 | ed.before.populated.........Only |
| 1f20 | 20 75 6e 64 69 72 65 63 74 65 64 20 47 72 61 70 68 73 20 61 72 65 20 73 75 70 70 6f 72 74 65 64 | .undirected.Graphs.are.supported |
| 1f40 | 2e 0a 0a 20 20 20 20 52 65 74 75 72 6e 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 47 | .......Returns.....-------.....G |
| 1f60 | 20 3a 20 4e 65 74 77 6f 72 6b 58 20 67 72 61 70 68 0a 20 20 20 20 20 20 20 20 41 20 62 61 72 62 | .:.NetworkX.graph.........A.barb |
| 1f80 | 65 6c 6c 20 67 72 61 70 68 2e 0a 0a 20 20 20 20 4e 6f 74 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 0a | ell.graph.......Notes.....-----. |
| 1fa0 | 0a 0a 20 20 20 20 54 77 6f 20 69 64 65 6e 74 69 63 61 6c 20 63 6f 6d 70 6c 65 74 65 20 67 72 61 | ......Two.identical.complete.gra |
| 1fc0 | 70 68 73 20 24 4b 5f 7b 6d 31 7d 24 20 66 6f 72 6d 20 74 68 65 20 6c 65 66 74 20 61 6e 64 20 72 | phs.$K_{m1}$.form.the.left.and.r |
| 1fe0 | 69 67 68 74 20 62 65 6c 6c 73 2c 0a 20 20 20 20 61 6e 64 20 61 72 65 20 63 6f 6e 6e 65 63 74 65 | ight.bells,.....and.are.connecte |
| 2000 | 64 20 62 79 20 61 20 70 61 74 68 20 24 50 5f 7b 6d 32 7d 24 2e 0a 0a 20 20 20 20 54 68 65 20 60 | d.by.a.path.$P_{m2}$.......The.` |
| 2020 | 32 2a 6d 31 2b 6d 32 60 20 20 6e 6f 64 65 73 20 61 72 65 20 6e 75 6d 62 65 72 65 64 0a 20 20 20 | 2*m1+m2`..nodes.are.numbered.... |
| 2040 | 20 20 20 20 20 60 30 2c 20 2e 2e 2e 2c 20 6d 31 2d 31 60 20 66 6f 72 20 74 68 65 20 6c 65 66 74 | .....`0,....,.m1-1`.for.the.left |
| 2060 | 20 62 61 72 62 65 6c 6c 2c 0a 20 20 20 20 20 20 20 20 60 6d 31 2c 20 2e 2e 2e 2c 20 6d 31 2b 6d | .barbell,.........`m1,....,.m1+m |
| 2080 | 32 2d 31 60 20 66 6f 72 20 74 68 65 20 70 61 74 68 2c 0a 20 20 20 20 20 20 20 20 61 6e 64 20 60 | 2-1`.for.the.path,.........and.` |
| 20a0 | 6d 31 2b 6d 32 2c 20 2e 2e 2e 2c 20 32 2a 6d 31 2b 6d 32 2d 31 60 20 66 6f 72 20 74 68 65 20 72 | m1+m2,....,.2*m1+m2-1`.for.the.r |
| 20c0 | 69 67 68 74 20 62 61 72 62 65 6c 6c 2e 0a 0a 20 20 20 20 54 68 65 20 33 20 73 75 62 67 72 61 70 | ight.barbell.......The.3.subgrap |
| 20e0 | 68 73 20 61 72 65 20 6a 6f 69 6e 65 64 20 76 69 61 20 74 68 65 20 65 64 67 65 73 20 60 28 6d 31 | hs.are.joined.via.the.edges.`(m1 |
| 2100 | 2d 31 2c 20 6d 31 29 60 20 61 6e 64 0a 20 20 20 20 60 28 6d 31 2b 6d 32 2d 31 2c 20 6d 31 2b 6d | -1,.m1)`.and.....`(m1+m2-1,.m1+m |
| 2120 | 32 29 60 2e 20 49 66 20 60 6d 32 3d 30 60 2c 20 74 68 69 73 20 69 73 20 6d 65 72 65 6c 79 20 74 | 2)`..If.`m2=0`,.this.is.merely.t |
| 2140 | 77 6f 20 63 6f 6d 70 6c 65 74 65 0a 20 20 20 20 67 72 61 70 68 73 20 6a 6f 69 6e 65 64 20 74 6f | wo.complete.....graphs.joined.to |
| 2160 | 67 65 74 68 65 72 2e 0a 0a 20 20 20 20 54 68 69 73 20 67 72 61 70 68 20 69 73 20 61 6e 20 65 78 | gether.......This.graph.is.an.ex |
| 2180 | 74 72 65 6d 61 6c 20 65 78 61 6d 70 6c 65 20 69 6e 20 44 61 76 69 64 20 41 6c 64 6f 75 73 0a 20 | tremal.example.in.David.Aldous.. |
| 21a0 | 20 20 20 61 6e 64 20 4a 69 6d 20 46 69 6c 6c 27 73 20 65 2d 74 65 78 74 20 6f 6e 20 52 61 6e 64 | ...and.Jim.Fill's.e-text.on.Rand |
| 21c0 | 6f 6d 20 57 61 6c 6b 73 20 6f 6e 20 47 72 61 70 68 73 2e 0a 0a 20 20 20 20 72 34 00 00 00 7a 2b | om.Walks.on.Graphs.......r4...z+ |
| 21e0 | 49 6e 76 61 6c 69 64 20 67 72 61 70 68 20 64 65 73 63 72 69 70 74 69 6f 6e 2c 20 6d 31 20 73 68 | Invalid.graph.description,.m1.sh |
| 2200 | 6f 75 6c 64 20 62 65 20 3e 3d 32 72 02 00 00 00 7a 2b 49 6e 76 61 6c 69 64 20 67 72 61 70 68 20 | ould.be.>=2r....z+Invalid.graph. |
| 2220 | 64 65 73 63 72 69 70 74 69 6f 6e 2c 20 6d 32 20 73 68 6f 75 6c 64 20 62 65 20 3e 3d 30 fa 1c 44 | description,.m2.should.be.>=0..D |
| 2240 | 69 72 65 63 74 65 64 20 47 72 61 70 68 20 6e 6f 74 20 73 75 70 70 6f 72 74 65 64 72 47 00 00 00 | irected.Graph.not.supportedrG... |
| 2260 | 63 01 00 00 00 00 00 00 00 00 00 00 00 06 00 00 00 33 00 00 00 f3 5a 00 00 00 95 02 4b 00 01 00 | c................3....Z.....K... |
| 2280 | 97 00 7c 00 5d 22 00 00 7d 01 74 01 00 00 00 00 00 00 00 00 7c 01 64 00 7a 00 00 00 64 01 89 03 | ..|.]"..}.t.........|.d.z...d... |
| 22a0 | 7a 05 00 00 89 04 7a 00 00 00 ab 02 00 00 00 00 00 00 44 00 5d 08 00 00 7d 02 7c 01 7c 02 66 02 | z.....z...........D.]...}.|.|.f. |
| 22c0 | 96 01 97 01 01 00 8c 0a 04 00 8c 24 04 00 79 02 ad 03 77 01 29 03 72 47 00 00 00 72 34 00 00 00 | ...........$..y...w.).rG...r4... |
| 22e0 | 4e 29 01 72 1e 00 00 00 29 05 72 38 00 00 00 da 01 75 da 01 76 da 02 6d 31 da 02 6d 32 73 05 00 | N).r....).r8.....u..v..m1..m2s.. |
| 2300 | 00 00 20 20 20 80 80 72 2a 00 00 00 72 3e 00 00 00 7a 20 62 61 72 62 65 6c 6c 5f 67 72 61 70 68 | .......r*...r>...z.barbell_graph |
| 2320 | 2e 3c 6c 6f 63 61 6c 73 3e 2e 3c 67 65 6e 65 78 70 72 3e 09 01 00 00 73 40 00 00 00 f8 e8 00 f8 | .<locals>.<genexpr>....s@....... |
| 2340 | 80 00 f2 00 02 15 06 d8 13 14 bc 55 c0 31 c0 71 c1 35 c8 21 c8 62 c9 26 d0 53 55 c9 2b d3 3d 56 | ...........U.1.q.5.!.b.&.SU.+.=V |
| 2360 | f2 03 02 15 06 d8 38 39 88 11 88 41 8c 06 f0 03 02 15 06 d8 08 0e f1 03 02 15 06 f9 72 3f 00 00 | ......89...A................r?.. |
| 2380 | 00 29 08 72 04 00 00 00 72 0a 00 00 00 da 0b 69 73 5f 64 69 72 65 63 74 65 64 72 44 00 00 00 72 | .).r....r......is_directedrD...r |
| 23a0 | 1e 00 00 00 72 2f 00 00 00 72 06 00 00 00 da 08 61 64 64 5f 65 64 67 65 29 04 72 4e 00 00 00 72 | ....r/...r......add_edge).rN...r |
| 23c0 | 4f 00 00 00 72 30 00 00 00 72 31 00 00 00 73 04 00 00 00 60 60 20 20 72 2a 00 00 00 72 08 00 00 | O...r0...r1...s....``..r*...r... |
| 23e0 | 00 72 08 00 00 00 cc 00 00 00 73 fd 00 00 00 f9 80 00 f0 5a 01 00 08 0a 88 41 82 76 dc 0e 1b d0 | .r........s........Z.....A.v.... |
| 2400 | 1c 49 d3 0e 4a d0 08 4a d8 07 09 88 41 82 76 dc 0e 1b d0 1c 49 d3 0e 4a d0 08 4a f4 06 00 09 17 | .I..J..J....A.v.....I..J..J..... |
| 2420 | 90 72 98 3c d3 08 28 80 41 d8 07 08 87 7d 81 7d 84 7f dc 0e 1b d0 1c 3a d3 0e 3b d0 08 3b f0 06 | .r.<..(.A....}.}.......:..;..;.. |
| 2440 | 00 05 06 d7 04 14 d1 04 14 94 55 98 32 98 72 a0 42 99 77 a8 11 99 7b d3 15 2b d4 04 2c d8 07 09 | ..........U.2.r.B.w...{..+..,... |
| 2460 | 88 41 82 76 d8 08 09 d7 08 18 d1 08 18 9c 18 a4 25 a8 02 a8 42 b0 12 a9 47 d3 22 34 d3 19 35 d4 | .A.v............%...B...G."4..5. |
| 2480 | 08 36 f0 06 00 05 06 d7 04 14 d1 04 14 f4 00 02 15 06 dc 18 1d 98 62 a0 32 99 67 a0 71 a8 32 a1 | .6....................b.2.g.q.2. |
| 24a0 | 76 b0 02 a1 7b d3 18 33 f4 03 02 15 06 f4 00 02 05 06 f0 0a 00 05 06 87 4a 81 4a 88 72 90 41 89 | v...{..3................J.J.r.A. |
| 24c0 | 76 90 72 d4 04 1a d8 07 09 88 41 82 76 d8 08 09 8f 0a 89 0a 90 32 98 02 91 37 98 51 91 3b a0 02 | v.r.......A.v........2...7.Q.;.. |
| 24e0 | a0 52 a1 07 d4 08 28 e0 0b 0c 80 48 72 32 00 00 00 63 02 00 00 00 00 00 00 00 00 00 00 00 08 00 | .R....(....Hr2...c.............. |
| 2500 | 00 00 03 00 00 00 f3 06 01 00 00 97 00 74 01 00 00 00 00 00 00 00 00 6a 02 00 00 00 00 00 00 00 | .............t.........j........ |
| 2520 | 00 00 00 00 00 00 00 00 00 00 00 64 01 7c 01 ab 02 00 00 00 00 00 00 7d 02 64 01 7d 03 74 05 00 | ...........d.|.........}.d.}.t.. |
| 2540 | 00 00 00 00 00 00 00 7c 00 ab 01 00 00 00 00 00 00 44 00 5d 54 00 00 7d 04 7c 02 6a 07 00 00 00 | .......|.........D.]T..}.|.j.... |
| 2560 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ab 00 00 00 00 00 00 00 44 00 8f 05 8f 06 63 03 67 | .......................D.....c.g |
| 2580 | 00 63 02 5d 0f 00 00 5c 02 00 00 7d 05 7d 06 7c 05 7c 03 7a 00 00 00 7c 06 7c 03 7a 00 00 00 66 | .c.]...\...}.}.|.|.z...|.|.z...f |
| 25a0 | 02 91 02 8c 11 04 00 7d 07 7d 05 7d 06 7c 02 6a 09 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | .......}.}.}.|.j................ |
| 25c0 | 00 00 00 7c 07 ab 01 00 00 00 00 00 00 01 00 7c 02 6a 0b 00 00 00 00 00 00 00 00 00 00 00 00 00 | ...|...........|.j.............. |
| 25e0 | 00 00 00 00 00 64 02 7c 03 ab 02 00 00 00 00 00 00 01 00 7c 03 64 03 7a 12 00 00 7d 03 8c 56 04 | .....d.|...........|.d.z...}..V. |
| 2600 | 00 7c 02 53 00 63 02 01 00 63 03 7d 06 7d 05 77 00 29 04 61 9d 02 00 00 52 65 74 75 72 6e 73 20 | .|.S.c...c.}.}.w.).a....Returns. |
| 2620 | 74 68 65 20 42 69 6e 6f 6d 69 61 6c 20 54 72 65 65 20 6f 66 20 6f 72 64 65 72 20 6e 2e 0a 0a 20 | the.Binomial.Tree.of.order.n.... |
| 2640 | 20 20 20 54 68 65 20 62 69 6e 6f 6d 69 61 6c 20 74 72 65 65 20 6f 66 20 6f 72 64 65 72 20 30 20 | ...The.binomial.tree.of.order.0. |
| 2660 | 63 6f 6e 73 69 73 74 73 20 6f 66 20 61 20 73 69 6e 67 6c 65 20 6e 6f 64 65 2e 20 41 20 62 69 6e | consists.of.a.single.node..A.bin |
| 2680 | 6f 6d 69 61 6c 20 74 72 65 65 20 6f 66 20 6f 72 64 65 72 20 6b 0a 20 20 20 20 69 73 20 64 65 66 | omial.tree.of.order.k.....is.def |
| 26a0 | 69 6e 65 64 20 72 65 63 75 72 73 69 76 65 6c 79 20 62 79 20 6c 69 6e 6b 69 6e 67 20 74 77 6f 20 | ined.recursively.by.linking.two. |
| 26c0 | 62 69 6e 6f 6d 69 61 6c 20 74 72 65 65 73 20 6f 66 20 6f 72 64 65 72 20 6b 2d 31 3a 20 74 68 65 | binomial.trees.of.order.k-1:.the |
| 26e0 | 20 72 6f 6f 74 20 6f 66 20 6f 6e 65 20 69 73 0a 20 20 20 20 74 68 65 20 6c 65 66 74 6d 6f 73 74 | .root.of.one.is.....the.leftmost |
| 2700 | 20 63 68 69 6c 64 20 6f 66 20 74 68 65 20 72 6f 6f 74 20 6f 66 20 74 68 65 20 6f 74 68 65 72 2e | .child.of.the.root.of.the.other. |
| 2720 | 0a 0a 20 20 20 20 2e 2e 20 70 6c 6f 74 3a 3a 0a 0a 20 20 20 20 20 20 20 20 3e 3e 3e 20 6e 78 2e | .........plot::..........>>>.nx. |
| 2740 | 64 72 61 77 28 6e 78 2e 62 69 6e 6f 6d 69 61 6c 5f 74 72 65 65 28 33 29 29 0a 0a 20 20 20 20 50 | draw(nx.binomial_tree(3))......P |
| 2760 | 61 72 61 6d 65 74 65 72 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 6e 20 3a | arameters.....----------.....n.: |
| 2780 | 20 69 6e 74 0a 20 20 20 20 20 20 20 20 4f 72 64 65 72 20 6f 66 20 74 68 65 20 62 69 6e 6f 6d 69 | .int.........Order.of.the.binomi |
| 27a0 | 61 6c 20 74 72 65 65 2e 0a 0a 20 20 20 20 63 72 65 61 74 65 5f 75 73 69 6e 67 20 3a 20 4e 65 74 | al.tree.......create_using.:.Net |
| 27c0 | 77 6f 72 6b 58 20 67 72 61 70 68 20 63 6f 6e 73 74 72 75 63 74 6f 72 2c 20 6f 70 74 69 6f 6e 61 | workX.graph.constructor,.optiona |
| 27e0 | 6c 20 28 64 65 66 61 75 6c 74 3d 6e 78 2e 47 72 61 70 68 29 0a 20 20 20 20 20 20 20 47 72 61 70 | l.(default=nx.Graph)........Grap |
| 2800 | 68 20 74 79 70 65 20 74 6f 20 63 72 65 61 74 65 2e 20 49 66 20 67 72 61 70 68 20 69 6e 73 74 61 | h.type.to.create..If.graph.insta |
| 2820 | 6e 63 65 2c 20 74 68 65 6e 20 63 6c 65 61 72 65 64 20 62 65 66 6f 72 65 20 70 6f 70 75 6c 61 74 | nce,.then.cleared.before.populat |
| 2840 | 65 64 2e 0a 0a 20 20 20 20 52 65 74 75 72 6e 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 | ed.......Returns.....-------.... |
| 2860 | 20 47 20 3a 20 4e 65 74 77 6f 72 6b 58 20 67 72 61 70 68 0a 20 20 20 20 20 20 20 20 41 20 62 69 | .G.:.NetworkX.graph.........A.bi |
| 2880 | 6e 6f 6d 69 61 6c 20 74 72 65 65 20 6f 66 20 24 32 5e 6e 24 20 6e 6f 64 65 73 20 61 6e 64 20 24 | nomial.tree.of.$2^n$.nodes.and.$ |
| 28a0 | 32 5e 6e 20 2d 20 31 24 20 65 64 67 65 73 2e 0a 0a 20 20 20 20 72 47 00 00 00 72 02 00 00 00 72 | 2^n.-.1$.edges.......rG...r....r |
| 28c0 | 34 00 00 00 29 06 72 40 00 00 00 72 10 00 00 00 72 1e 00 00 00 da 05 65 64 67 65 73 72 2f 00 00 | 4...).r@...r....r......edgesr/.. |
| 28e0 | 00 72 51 00 00 00 29 08 72 23 00 00 00 72 30 00 00 00 72 31 00 00 00 da 01 4e 72 28 00 00 00 72 | .rQ...).r#...r0...r1.....Nr(...r |
| 2900 | 4c 00 00 00 72 4d 00 00 00 72 53 00 00 00 73 08 00 00 00 20 20 20 20 20 20 20 20 72 2a 00 00 00 | L...rM...rS...s............r*... |
| 2920 | 72 09 00 00 00 72 09 00 00 00 15 01 00 00 73 86 00 00 00 80 00 f4 34 00 09 0b 8f 0e 89 0e 90 71 | r....r........s.......4........q |
| 2940 | 98 2c d3 08 27 80 41 e0 08 09 80 41 dc 0d 12 90 31 8b 58 f2 00 05 05 0f 88 01 e0 2e 2f af 67 a9 | .,..'.A....A....1.X........./.g. |
| 2960 | 67 ab 69 d7 10 38 a1 46 a0 51 a8 01 90 21 90 61 91 25 98 11 98 51 99 15 92 1e d0 10 38 88 05 d1 | g.i..8.F.Q...!.a.%...Q......8... |
| 2980 | 10 38 d8 08 09 d7 08 18 d1 08 18 98 15 d4 08 1f d8 08 09 8f 0a 89 0a 90 31 90 61 d4 08 18 d8 08 | .8......................1.a..... |
| 29a0 | 09 88 51 89 06 89 01 f0 0b 05 05 0f f0 0c 00 0c 0d 80 48 f9 f3 09 00 11 39 73 05 00 00 00 ba 14 | ..Q...............H.....9s...... |
| 29c0 | 41 3d 08 63 02 00 00 00 00 00 00 00 00 00 00 00 04 00 00 00 03 00 00 00 f3 e0 00 00 00 97 00 7c | A=.c...........................| |
| 29e0 | 00 5c 02 00 00 7d 02 7d 03 74 01 00 00 00 00 00 00 00 00 7c 03 7c 01 ab 02 00 00 00 00 00 00 7d | .\...}.}.t.........|.|.........} |
| 2a00 | 04 74 03 00 00 00 00 00 00 00 00 7c 03 ab 01 00 00 00 00 00 00 64 01 6b 44 00 00 72 4e 7c 04 6a | .t.........|.........d.kD..rN|.j |
| 2a20 | 05 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ab 00 00 00 00 00 00 00 72 17 74 07 00 | ...........................r.t.. |
| 2a40 | 00 00 00 00 00 00 00 6a 08 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 03 64 02 ab | .......j...................|.d.. |
| 2a60 | 02 00 00 00 00 00 00 7d 05 6e 16 74 07 00 00 00 00 00 00 00 00 6a 0a 00 00 00 00 00 00 00 00 00 | .......}.n.t.........j.......... |
| 2a80 | 00 00 00 00 00 00 00 00 00 7c 03 64 02 ab 02 00 00 00 00 00 00 7d 05 7c 04 6a 0d 00 00 00 00 00 | .........|.d.........}.|.j...... |
| 2aa0 | 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 05 ab 01 00 00 00 00 00 00 01 00 7c 04 53 00 29 03 61 | .............|...........|.S.).a |
| 2ac0 | dd 03 00 00 52 65 74 75 72 6e 20 74 68 65 20 63 6f 6d 70 6c 65 74 65 20 67 72 61 70 68 20 60 4b | ....Return.the.complete.graph.`K |
| 2ae0 | 5f 6e 60 20 77 69 74 68 20 6e 20 6e 6f 64 65 73 2e 0a 0a 20 20 20 20 41 20 63 6f 6d 70 6c 65 74 | _n`.with.n.nodes.......A.complet |
| 2b00 | 65 20 67 72 61 70 68 20 6f 6e 20 60 6e 60 20 6e 6f 64 65 73 20 6d 65 61 6e 73 20 74 68 61 74 20 | e.graph.on.`n`.nodes.means.that. |
| 2b20 | 61 6c 6c 20 70 61 69 72 73 0a 20 20 20 20 6f 66 20 64 69 73 74 69 6e 63 74 20 6e 6f 64 65 73 20 | all.pairs.....of.distinct.nodes. |
| 2b40 | 68 61 76 65 20 61 6e 20 65 64 67 65 20 63 6f 6e 6e 65 63 74 69 6e 67 20 74 68 65 6d 2e 0a 0a 20 | have.an.edge.connecting.them.... |
| 2b60 | 20 20 20 2e 2e 20 70 6c 6f 74 3a 3a 0a 0a 20 20 20 20 20 20 20 20 3e 3e 3e 20 6e 78 2e 64 72 61 | ......plot::..........>>>.nx.dra |
| 2b80 | 77 28 6e 78 2e 63 6f 6d 70 6c 65 74 65 5f 67 72 61 70 68 28 35 29 29 0a 0a 20 20 20 20 50 61 72 | w(nx.complete_graph(5))......Par |
| 2ba0 | 61 6d 65 74 65 72 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 6e 20 3a 20 69 | ameters.....----------.....n.:.i |
| 2bc0 | 6e 74 20 6f 72 20 69 74 65 72 61 62 6c 65 20 63 6f 6e 74 61 69 6e 65 72 20 6f 66 20 6e 6f 64 65 | nt.or.iterable.container.of.node |
| 2be0 | 73 0a 20 20 20 20 20 20 20 20 49 66 20 6e 20 69 73 20 61 6e 20 69 6e 74 65 67 65 72 2c 20 6e 6f | s.........If.n.is.an.integer,.no |
| 2c00 | 64 65 73 20 61 72 65 20 66 72 6f 6d 20 72 61 6e 67 65 28 6e 29 2e 0a 20 20 20 20 20 20 20 20 49 | des.are.from.range(n)..........I |
| 2c20 | 66 20 6e 20 69 73 20 61 20 63 6f 6e 74 61 69 6e 65 72 20 6f 66 20 6e 6f 64 65 73 2c 20 74 68 6f | f.n.is.a.container.of.nodes,.tho |
| 2c40 | 73 65 20 6e 6f 64 65 73 20 61 70 70 65 61 72 20 69 6e 20 74 68 65 20 67 72 61 70 68 2e 0a 20 20 | se.nodes.appear.in.the.graph.... |
| 2c60 | 20 20 20 20 20 20 57 61 72 6e 69 6e 67 3a 20 6e 20 69 73 20 6e 6f 74 20 63 68 65 63 6b 65 64 20 | ......Warning:.n.is.not.checked. |
| 2c80 | 66 6f 72 20 64 75 70 6c 69 63 61 74 65 73 20 61 6e 64 20 69 66 20 70 72 65 73 65 6e 74 20 74 68 | for.duplicates.and.if.present.th |
| 2ca0 | 65 0a 20 20 20 20 20 20 20 20 72 65 73 75 6c 74 69 6e 67 20 67 72 61 70 68 20 6d 61 79 20 6e 6f | e.........resulting.graph.may.no |
| 2cc0 | 74 20 62 65 20 61 73 20 64 65 73 69 72 65 64 2e 20 4d 61 6b 65 20 73 75 72 65 20 79 6f 75 20 68 | t.be.as.desired..Make.sure.you.h |
| 2ce0 | 61 76 65 20 6e 6f 20 64 75 70 6c 69 63 61 74 65 73 2e 0a 20 20 20 20 63 72 65 61 74 65 5f 75 73 | ave.no.duplicates......create_us |
| 2d00 | 69 6e 67 20 3a 20 4e 65 74 77 6f 72 6b 58 20 67 72 61 70 68 20 63 6f 6e 73 74 72 75 63 74 6f 72 | ing.:.NetworkX.graph.constructor |
| 2d20 | 2c 20 6f 70 74 69 6f 6e 61 6c 20 28 64 65 66 61 75 6c 74 3d 6e 78 2e 47 72 61 70 68 29 0a 20 20 | ,.optional.(default=nx.Graph)... |
| 2d40 | 20 20 20 20 20 47 72 61 70 68 20 74 79 70 65 20 74 6f 20 63 72 65 61 74 65 2e 20 49 66 20 67 72 | .....Graph.type.to.create..If.gr |
| 2d60 | 61 70 68 20 69 6e 73 74 61 6e 63 65 2c 20 74 68 65 6e 20 63 6c 65 61 72 65 64 20 62 65 66 6f 72 | aph.instance,.then.cleared.befor |
| 2d80 | 65 20 70 6f 70 75 6c 61 74 65 64 2e 0a 0a 20 20 20 20 45 78 61 6d 70 6c 65 73 0a 20 20 20 20 2d | e.populated.......Examples.....- |
| 2da0 | 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 3e 3e 3e 20 47 20 3d 20 6e 78 2e 63 6f 6d 70 6c 65 74 65 5f | -------.....>>>.G.=.nx.complete_ |
| 2dc0 | 67 72 61 70 68 28 39 29 0a 20 20 20 20 3e 3e 3e 20 6c 65 6e 28 47 29 0a 20 20 20 20 39 0a 20 20 | graph(9).....>>>.len(G).....9... |
| 2de0 | 20 20 3e 3e 3e 20 47 2e 73 69 7a 65 28 29 0a 20 20 20 20 33 36 0a 20 20 20 20 3e 3e 3e 20 47 20 | ..>>>.G.size().....36.....>>>.G. |
| 2e00 | 3d 20 6e 78 2e 63 6f 6d 70 6c 65 74 65 5f 67 72 61 70 68 28 72 61 6e 67 65 28 31 31 2c 20 31 34 | =.nx.complete_graph(range(11,.14 |
| 2e20 | 29 29 0a 20 20 20 20 3e 3e 3e 20 6c 69 73 74 28 47 2e 6e 6f 64 65 73 28 29 29 0a 20 20 20 20 5b | )).....>>>.list(G.nodes()).....[ |
| 2e40 | 31 31 2c 20 31 32 2c 20 31 33 5d 0a 20 20 20 20 3e 3e 3e 20 47 20 3d 20 6e 78 2e 63 6f 6d 70 6c | 11,.12,.13].....>>>.G.=.nx.compl |
| 2e60 | 65 74 65 5f 67 72 61 70 68 28 34 2c 20 6e 78 2e 44 69 47 72 61 70 68 28 29 29 0a 20 20 20 20 3e | ete_graph(4,.nx.DiGraph()).....> |
| 2e80 | 3e 3e 20 47 2e 69 73 5f 64 69 72 65 63 74 65 64 28 29 0a 20 20 20 20 54 72 75 65 0a 0a 20 20 20 | >>.G.is_directed().....True..... |
| 2ea0 | 20 72 47 00 00 00 72 34 00 00 00 29 07 72 10 00 00 00 da 03 6c 65 6e 72 50 00 00 00 72 42 00 00 | .rG...r4...).r......lenrP...rB.. |
| 2ec0 | 00 da 0c 70 65 72 6d 75 74 61 74 69 6f 6e 73 72 43 00 00 00 72 2f 00 00 00 29 06 72 23 00 00 00 | ...permutationsrC...r/...).r#... |
| 2ee0 | 72 30 00 00 00 da 01 5f 72 25 00 00 00 72 31 00 00 00 72 53 00 00 00 73 06 00 00 00 20 20 20 20 | r0....._r%...r1...rS...s........ |
| 2f00 | 20 20 72 2a 00 00 00 72 0a 00 00 00 72 0a 00 00 00 3b 01 00 00 73 65 00 00 00 80 00 f0 4a 01 00 | ..r*...r....r....;...se......J.. |
| 2f20 | 10 11 81 48 80 41 80 75 dc 08 13 90 45 98 3c d3 08 28 80 41 dc 07 0a 88 35 83 7a 90 41 82 7e d8 | ...H.A.u....E.<..(.A....5.z.A.~. |
| 2f40 | 0b 0c 8f 3d 89 3d 8c 3f dc 14 1d d7 14 2a d1 14 2a a8 35 b0 21 d3 14 34 89 45 e4 14 1d d7 14 2a | ...=.=.?.....*..*.5.!..4.E.....* |
| 2f60 | d1 14 2a a8 35 b0 21 d3 14 34 88 45 d8 08 09 d7 08 18 d1 08 18 98 15 d4 08 1f d8 0b 0c 80 48 72 | ..*.5.!..4.E..................Hr |
| 2f80 | 32 00 00 00 63 02 00 00 00 00 00 00 00 00 00 00 00 05 00 00 00 03 00 00 00 f3 78 00 00 00 97 00 | 2...c.....................x..... |
| 2fa0 | 74 01 00 00 00 00 00 00 00 00 7c 00 7c 01 ab 02 00 00 00 00 00 00 7d 02 7c 02 6a 03 00 00 00 00 | t.........|.|.........}.|.j..... |
| 2fc0 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 64 01 7c 00 64 02 7a 0a 00 00 ab 02 00 00 00 00 00 00 | ..............d.|.d.z........... |
| 2fe0 | 01 00 7c 02 6a 03 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 00 64 03 7c 00 7a 05 | ..|.j...................|.d.|.z. |
| 3000 | 00 00 64 02 7a 0a 00 00 ab 02 00 00 00 00 00 00 01 00 7c 02 53 00 29 04 61 23 01 00 00 52 65 74 | ..d.z.............|.S.).a#...Ret |
| 3020 | 75 72 6e 73 20 74 68 65 20 63 69 72 63 75 6c 61 72 20 6c 61 64 64 65 72 20 67 72 61 70 68 20 24 | urns.the.circular.ladder.graph.$ |
| 3040 | 43 4c 5f 6e 24 20 6f 66 20 6c 65 6e 67 74 68 20 6e 2e 0a 0a 20 20 20 20 24 43 4c 5f 6e 24 20 63 | CL_n$.of.length.n.......$CL_n$.c |
| 3060 | 6f 6e 73 69 73 74 73 20 6f 66 20 74 77 6f 20 63 6f 6e 63 65 6e 74 72 69 63 20 6e 2d 63 79 63 6c | onsists.of.two.concentric.n-cycl |
| 3080 | 65 73 20 69 6e 20 77 68 69 63 68 0a 20 20 20 20 65 61 63 68 20 6f 66 20 74 68 65 20 6e 20 70 61 | es.in.which.....each.of.the.n.pa |
| 30a0 | 69 72 73 20 6f 66 20 63 6f 6e 63 65 6e 74 72 69 63 20 6e 6f 64 65 73 20 61 72 65 20 6a 6f 69 6e | irs.of.concentric.nodes.are.join |
| 30c0 | 65 64 20 62 79 20 61 6e 20 65 64 67 65 2e 0a 0a 20 20 20 20 4e 6f 64 65 20 6c 61 62 65 6c 73 20 | ed.by.an.edge.......Node.labels. |
| 30e0 | 61 72 65 20 74 68 65 20 69 6e 74 65 67 65 72 73 20 30 20 74 6f 20 6e 2d 31 0a 0a 20 20 20 20 2e | are.the.integers.0.to.n-1....... |
| 3100 | 2e 20 70 6c 6f 74 3a 3a 0a 0a 20 20 20 20 20 20 20 20 3e 3e 3e 20 6e 78 2e 64 72 61 77 28 6e 78 | ..plot::..........>>>.nx.draw(nx |
| 3120 | 2e 63 69 72 63 75 6c 61 72 5f 6c 61 64 64 65 72 5f 67 72 61 70 68 28 35 29 29 0a 0a 20 20 20 20 | .circular_ladder_graph(5))...... |
| 3140 | 72 02 00 00 00 72 47 00 00 00 72 34 00 00 00 29 02 72 13 00 00 00 72 51 00 00 00 a9 03 72 23 00 | r....rG...r4...).r....rQ.....r#. |
| 3160 | 00 00 72 30 00 00 00 72 31 00 00 00 73 03 00 00 00 20 20 20 72 2a 00 00 00 72 0c 00 00 00 72 0c | ..r0...r1...s.......r*...r....r. |
| 3180 | 00 00 00 6b 01 00 00 73 3d 00 00 00 80 00 f4 1c 00 09 15 90 51 98 0c d3 08 25 80 41 d8 04 05 87 | ...k...s=...........Q....%.A.... |
| 31a0 | 4a 81 4a 88 71 90 21 90 61 91 25 d4 04 18 d8 04 05 87 4a 81 4a 88 71 90 21 90 61 91 25 98 21 91 | J.J.q.!.a.%.......J.J.q.!.a.%.!. |
| 31c0 | 29 d4 04 1c d8 0b 0c 80 48 72 32 00 00 00 63 03 00 00 00 00 00 00 00 00 00 00 00 07 00 00 00 03 | ).......Hr2...c................. |
| 31e0 | 00 00 00 f3 ac 00 00 00 97 00 74 01 00 00 00 00 00 00 00 00 7c 00 7c 02 ab 02 00 00 00 00 00 00 | ..........t.........|.|......... |
| 3200 | 7d 03 74 03 00 00 00 00 00 00 00 00 7c 00 ab 01 00 00 00 00 00 00 44 00 5d 39 00 00 7d 04 7c 01 | }.t.........|.........D.]9..}.|. |
| 3220 | 44 00 5d 32 00 00 7d 05 7c 03 6a 05 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 04 | D.]2..}.|.j...................|. |
| 3240 | 7c 04 7c 05 7a 0a 00 00 7c 00 7a 06 00 00 ab 02 00 00 00 00 00 00 01 00 7c 03 6a 05 00 00 00 00 | |.|.z...|.z.............|.j..... |
| 3260 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 04 7c 04 7c 05 7a 00 00 00 7c 00 7a 06 00 00 ab 02 | ..............|.|.|.z...|.z..... |
| 3280 | 00 00 00 00 00 00 01 00 8c 34 04 00 8c 3b 04 00 7c 03 53 00 29 01 61 f5 06 00 00 52 65 74 75 72 | .........4...;..|.S.).a....Retur |
| 32a0 | 6e 73 20 74 68 65 20 63 69 72 63 75 6c 61 6e 74 20 67 72 61 70 68 20 24 43 69 5f 6e 28 78 5f 31 | ns.the.circulant.graph.$Ci_n(x_1 |
| 32c0 | 2c 20 78 5f 32 2c 20 2e 2e 2e 2c 20 78 5f 6d 29 24 20 77 69 74 68 20 24 6e 24 20 6e 6f 64 65 73 | ,.x_2,....,.x_m)$.with.$n$.nodes |
| 32e0 | 2e 0a 0a 20 20 20 20 54 68 65 20 63 69 72 63 75 6c 61 6e 74 20 67 72 61 70 68 20 24 43 69 5f 6e | .......The.circulant.graph.$Ci_n |
| 3300 | 28 78 5f 31 2c 20 2e 2e 2e 2c 20 78 5f 6d 29 24 20 63 6f 6e 73 69 73 74 73 20 6f 66 20 24 6e 24 | (x_1,....,.x_m)$.consists.of.$n$ |
| 3320 | 20 6e 6f 64 65 73 20 24 30 2c 20 2e 2e 2e 2c 20 6e 2d 31 24 0a 20 20 20 20 73 75 63 68 20 74 68 | .nodes.$0,....,.n-1$.....such.th |
| 3340 | 61 74 20 6e 6f 64 65 20 24 69 24 20 69 73 20 63 6f 6e 6e 65 63 74 65 64 20 74 6f 20 6e 6f 64 65 | at.node.$i$.is.connected.to.node |
| 3360 | 73 20 24 28 69 20 2b 20 78 29 20 5c 6d 6f 64 20 6e 24 20 61 6e 64 20 24 28 69 20 2d 20 78 29 20 | s.$(i.+.x).\mod.n$.and.$(i.-.x). |
| 3380 | 5c 6d 6f 64 20 6e 24 0a 20 20 20 20 66 6f 72 20 61 6c 6c 20 24 78 24 20 69 6e 20 24 78 5f 31 2c | \mod.n$.....for.all.$x$.in.$x_1, |
| 33a0 | 20 2e 2e 2e 2c 20 78 5f 6d 24 2e 20 54 68 75 73 20 24 43 69 5f 6e 28 31 29 24 20 69 73 20 61 20 | ....,.x_m$..Thus.$Ci_n(1)$.is.a. |
| 33c0 | 63 79 63 6c 65 20 67 72 61 70 68 2e 0a 0a 20 20 20 20 2e 2e 20 70 6c 6f 74 3a 3a 0a 0a 20 20 20 | cycle.graph..........plot::..... |
| 33e0 | 20 20 20 20 20 3e 3e 3e 20 6e 78 2e 64 72 61 77 28 6e 78 2e 63 69 72 63 75 6c 61 6e 74 5f 67 72 | .....>>>.nx.draw(nx.circulant_gr |
| 3400 | 61 70 68 28 31 30 2c 20 5b 31 5d 29 29 0a 0a 20 20 20 20 50 61 72 61 6d 65 74 65 72 73 0a 20 20 | aph(10,.[1]))......Parameters... |
| 3420 | 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 6e 20 3a 20 69 6e 74 65 67 65 72 0a 20 20 20 | ..----------.....n.:.integer.... |
| 3440 | 20 20 20 20 20 54 68 65 20 6e 75 6d 62 65 72 20 6f 66 20 6e 6f 64 65 73 20 69 6e 20 74 68 65 20 | .....The.number.of.nodes.in.the. |
| 3460 | 67 72 61 70 68 2e 0a 20 20 20 20 6f 66 66 73 65 74 73 20 3a 20 6c 69 73 74 20 6f 66 20 69 6e 74 | graph......offsets.:.list.of.int |
| 3480 | 65 67 65 72 73 0a 20 20 20 20 20 20 20 20 41 20 6c 69 73 74 20 6f 66 20 6e 6f 64 65 20 6f 66 66 | egers.........A.list.of.node.off |
| 34a0 | 73 65 74 73 2c 20 24 78 5f 31 24 20 75 70 20 74 6f 20 24 78 5f 6d 24 2c 20 61 73 20 64 65 73 63 | sets,.$x_1$.up.to.$x_m$,.as.desc |
| 34c0 | 72 69 62 65 64 20 61 62 6f 76 65 2e 0a 20 20 20 20 63 72 65 61 74 65 5f 75 73 69 6e 67 20 3a 20 | ribed.above......create_using.:. |
| 34e0 | 4e 65 74 77 6f 72 6b 58 20 67 72 61 70 68 20 63 6f 6e 73 74 72 75 63 74 6f 72 2c 20 6f 70 74 69 | NetworkX.graph.constructor,.opti |
| 3500 | 6f 6e 61 6c 20 28 64 65 66 61 75 6c 74 3d 6e 78 2e 47 72 61 70 68 29 0a 20 20 20 20 20 20 20 47 | onal.(default=nx.Graph)........G |
| 3520 | 72 61 70 68 20 74 79 70 65 20 74 6f 20 63 72 65 61 74 65 2e 20 49 66 20 67 72 61 70 68 20 69 6e | raph.type.to.create..If.graph.in |
| 3540 | 73 74 61 6e 63 65 2c 20 74 68 65 6e 20 63 6c 65 61 72 65 64 20 62 65 66 6f 72 65 20 70 6f 70 75 | stance,.then.cleared.before.popu |
| 3560 | 6c 61 74 65 64 2e 0a 0a 20 20 20 20 52 65 74 75 72 6e 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 0a | lated.......Returns.....-------. |
| 3580 | 20 20 20 20 4e 65 74 77 6f 72 6b 58 20 47 72 61 70 68 20 6f 66 20 74 79 70 65 20 63 72 65 61 74 | ....NetworkX.Graph.of.type.creat |
| 35a0 | 65 5f 75 73 69 6e 67 0a 0a 20 20 20 20 45 78 61 6d 70 6c 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d | e_using......Examples.....------ |
| 35c0 | 2d 2d 0a 20 20 20 20 4d 61 6e 79 20 77 65 6c 6c 2d 6b 6e 6f 77 6e 20 67 72 61 70 68 20 66 61 6d | --.....Many.well-known.graph.fam |
| 35e0 | 69 6c 69 65 73 20 61 72 65 20 73 75 62 66 61 6d 69 6c 69 65 73 20 6f 66 20 74 68 65 20 63 69 72 | ilies.are.subfamilies.of.the.cir |
| 3600 | 63 75 6c 61 6e 74 20 67 72 61 70 68 73 3b 0a 20 20 20 20 66 6f 72 20 65 78 61 6d 70 6c 65 2c 20 | culant.graphs;.....for.example,. |
| 3620 | 74 6f 20 63 72 65 61 74 65 20 74 68 65 20 63 79 63 6c 65 20 67 72 61 70 68 20 6f 6e 20 6e 20 70 | to.create.the.cycle.graph.on.n.p |
| 3640 | 6f 69 6e 74 73 2c 20 77 65 20 63 6f 6e 6e 65 63 74 20 65 76 65 72 79 0a 20 20 20 20 6e 6f 64 65 | oints,.we.connect.every.....node |
| 3660 | 20 74 6f 20 6e 6f 64 65 73 20 6f 6e 20 65 69 74 68 65 72 20 73 69 64 65 20 28 77 69 74 68 20 6f | .to.nodes.on.either.side.(with.o |
| 3680 | 66 66 73 65 74 20 70 6c 75 73 20 6f 72 20 6d 69 6e 75 73 20 6f 6e 65 29 2e 20 46 6f 72 20 6e 20 | ffset.plus.or.minus.one)..For.n. |
| 36a0 | 3d 20 31 30 2c 0a 0a 20 20 20 20 3e 3e 3e 20 47 20 3d 20 6e 78 2e 63 69 72 63 75 6c 61 6e 74 5f | =.10,......>>>.G.=.nx.circulant_ |
| 36c0 | 67 72 61 70 68 28 31 30 2c 20 5b 31 5d 29 0a 20 20 20 20 3e 3e 3e 20 65 64 67 65 73 20 3d 20 5b | graph(10,.[1]).....>>>.edges.=.[ |
| 36e0 | 0a 20 20 20 20 2e 2e 2e 20 20 20 20 20 28 30 2c 20 39 29 2c 0a 20 20 20 20 2e 2e 2e 20 20 20 20 | .............(0,.9),............ |
| 3700 | 20 28 30 2c 20 31 29 2c 0a 20 20 20 20 2e 2e 2e 20 20 20 20 20 28 31 2c 20 32 29 2c 0a 20 20 20 | .(0,.1),.............(1,.2),.... |
| 3720 | 20 2e 2e 2e 20 20 20 20 20 28 32 2c 20 33 29 2c 0a 20 20 20 20 2e 2e 2e 20 20 20 20 20 28 33 2c | .........(2,.3),.............(3, |
| 3740 | 20 34 29 2c 0a 20 20 20 20 2e 2e 2e 20 20 20 20 20 28 34 2c 20 35 29 2c 0a 20 20 20 20 2e 2e 2e | .4),.............(4,.5),........ |
| 3760 | 20 20 20 20 20 28 35 2c 20 36 29 2c 0a 20 20 20 20 2e 2e 2e 20 20 20 20 20 28 36 2c 20 37 29 2c | .....(5,.6),.............(6,.7), |
| 3780 | 0a 20 20 20 20 2e 2e 2e 20 20 20 20 20 28 37 2c 20 38 29 2c 0a 20 20 20 20 2e 2e 2e 20 20 20 20 | .............(7,.8),............ |
| 37a0 | 20 28 38 2c 20 39 29 2c 0a 20 20 20 20 2e 2e 2e 20 5d 0a 20 20 20 20 3e 3e 3e 20 73 6f 72 74 65 | .(8,.9),.........].....>>>.sorte |
| 37c0 | 64 28 65 64 67 65 73 29 20 3d 3d 20 73 6f 72 74 65 64 28 47 2e 65 64 67 65 73 28 29 29 0a 20 20 | d(edges).==.sorted(G.edges())... |
| 37e0 | 20 20 54 72 75 65 0a 0a 20 20 20 20 53 69 6d 69 6c 61 72 6c 79 2c 20 77 65 20 63 61 6e 20 63 72 | ..True......Similarly,.we.can.cr |
| 3800 | 65 61 74 65 20 74 68 65 20 63 6f 6d 70 6c 65 74 65 20 67 72 61 70 68 0a 20 20 20 20 6f 6e 20 35 | eate.the.complete.graph.....on.5 |
| 3820 | 20 70 6f 69 6e 74 73 20 77 69 74 68 20 74 68 65 20 73 65 74 20 6f 66 20 6f 66 66 73 65 74 73 20 | .points.with.the.set.of.offsets. |
| 3840 | 5b 31 2c 20 32 5d 3a 0a 0a 20 20 20 20 3e 3e 3e 20 47 20 3d 20 6e 78 2e 63 69 72 63 75 6c 61 6e | [1,.2]:......>>>.G.=.nx.circulan |
| 3860 | 74 5f 67 72 61 70 68 28 35 2c 20 5b 31 2c 20 32 5d 29 0a 20 20 20 20 3e 3e 3e 20 65 64 67 65 73 | t_graph(5,.[1,.2]).....>>>.edges |
| 3880 | 20 3d 20 5b 0a 20 20 20 20 2e 2e 2e 20 20 20 20 20 28 30 2c 20 31 29 2c 0a 20 20 20 20 2e 2e 2e | .=.[.............(0,.1),........ |
| 38a0 | 20 20 20 20 20 28 30 2c 20 32 29 2c 0a 20 20 20 20 2e 2e 2e 20 20 20 20 20 28 30 2c 20 33 29 2c | .....(0,.2),.............(0,.3), |
| 38c0 | 0a 20 20 20 20 2e 2e 2e 20 20 20 20 20 28 30 2c 20 34 29 2c 0a 20 20 20 20 2e 2e 2e 20 20 20 20 | .............(0,.4),............ |
| 38e0 | 20 28 31 2c 20 32 29 2c 0a 20 20 20 20 2e 2e 2e 20 20 20 20 20 28 31 2c 20 33 29 2c 0a 20 20 20 | .(1,.2),.............(1,.3),.... |
| 3900 | 20 2e 2e 2e 20 20 20 20 20 28 31 2c 20 34 29 2c 0a 20 20 20 20 2e 2e 2e 20 20 20 20 20 28 32 2c | .........(1,.4),.............(2, |
| 3920 | 20 33 29 2c 0a 20 20 20 20 2e 2e 2e 20 20 20 20 20 28 32 2c 20 34 29 2c 0a 20 20 20 20 2e 2e 2e | .3),.............(2,.4),........ |
| 3940 | 20 20 20 20 20 28 33 2c 20 34 29 2c 0a 20 20 20 20 2e 2e 2e 20 5d 0a 20 20 20 20 3e 3e 3e 20 73 | .....(3,.4),.........].....>>>.s |
| 3960 | 6f 72 74 65 64 28 65 64 67 65 73 29 20 3d 3d 20 73 6f 72 74 65 64 28 47 2e 65 64 67 65 73 28 29 | orted(edges).==.sorted(G.edges() |
| 3980 | 29 0a 20 20 20 20 54 72 75 65 0a 0a 20 20 20 20 29 03 72 10 00 00 00 72 1e 00 00 00 72 51 00 00 | ).....True......).r....r....rQ.. |
| 39a0 | 00 29 06 72 23 00 00 00 da 07 6f 66 66 73 65 74 73 72 30 00 00 00 72 31 00 00 00 72 28 00 00 00 | .).r#.....offsetsr0...r1...r(... |
| 39c0 | da 01 6a 73 06 00 00 00 20 20 20 20 20 20 72 2a 00 00 00 72 0d 00 00 00 72 0d 00 00 00 7f 01 00 | ..js..........r*...r....r....... |
| 39e0 | 00 73 66 00 00 00 80 00 f4 46 02 00 09 14 90 41 90 7c d3 08 24 80 41 dc 0d 12 90 31 8b 58 f2 00 | .sf......F.....A.|..$.A....1.X.. |
| 3a00 | 03 05 27 88 01 d8 11 18 f2 00 02 09 27 88 41 d8 0c 0d 8f 4a 89 4a 90 71 98 31 98 71 99 35 a0 41 | ..'.........'.A....J.J.q.1.q.5.A |
| 3a20 | 99 2b d4 0c 26 d8 0c 0d 8f 4a 89 4a 90 71 98 31 98 71 99 35 a0 41 99 2b d5 0c 26 f1 05 02 09 27 | .+..&....J.J.q.1.q.5.A.+..&....' |
| 3a40 | f0 03 03 05 27 f0 08 00 0c 0d 80 48 72 32 00 00 00 63 02 00 00 00 00 00 00 00 00 00 00 00 06 00 | ....'......Hr2...c.............. |
| 3a60 | 00 00 03 00 00 00 f3 60 00 00 00 97 00 7c 00 5c 02 00 00 7d 02 7d 03 74 01 00 00 00 00 00 00 00 | .......`.....|.\...}.}.t........ |
| 3a80 | 00 7c 03 7c 01 ab 02 00 00 00 00 00 00 7d 04 7c 04 6a 03 00 00 00 00 00 00 00 00 00 00 00 00 00 | .|.|.........}.|.j.............. |
| 3aa0 | 00 00 00 00 00 74 05 00 00 00 00 00 00 00 00 7c 03 64 01 ac 02 ab 02 00 00 00 00 00 00 ab 01 00 | .....t.........|.d.............. |
| 3ac0 | 00 00 00 00 00 01 00 7c 04 53 00 29 03 61 03 03 00 00 52 65 74 75 72 6e 73 20 74 68 65 20 63 79 | .......|.S.).a....Returns.the.cy |
| 3ae0 | 63 6c 65 20 67 72 61 70 68 20 24 43 5f 6e 24 20 6f 66 20 63 79 63 6c 69 63 61 6c 6c 79 20 63 6f | cle.graph.$C_n$.of.cyclically.co |
| 3b00 | 6e 6e 65 63 74 65 64 20 6e 6f 64 65 73 2e 0a 0a 20 20 20 20 24 43 5f 6e 24 20 69 73 20 61 20 70 | nnected.nodes.......$C_n$.is.a.p |
| 3b20 | 61 74 68 20 77 69 74 68 20 69 74 73 20 74 77 6f 20 65 6e 64 2d 6e 6f 64 65 73 20 63 6f 6e 6e 65 | ath.with.its.two.end-nodes.conne |
| 3b40 | 63 74 65 64 2e 0a 0a 20 20 20 20 2e 2e 20 70 6c 6f 74 3a 3a 0a 0a 20 20 20 20 20 20 20 20 3e 3e | cted..........plot::..........>> |
| 3b60 | 3e 20 6e 78 2e 64 72 61 77 28 6e 78 2e 63 79 63 6c 65 5f 67 72 61 70 68 28 35 29 29 0a 0a 20 20 | >.nx.draw(nx.cycle_graph(5)).... |
| 3b80 | 20 20 50 61 72 61 6d 65 74 65 72 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 | ..Parameters.....----------..... |
| 3ba0 | 6e 20 3a 20 69 6e 74 20 6f 72 20 69 74 65 72 61 62 6c 65 20 63 6f 6e 74 61 69 6e 65 72 20 6f 66 | n.:.int.or.iterable.container.of |
| 3bc0 | 20 6e 6f 64 65 73 0a 20 20 20 20 20 20 20 20 49 66 20 6e 20 69 73 20 61 6e 20 69 6e 74 65 67 65 | .nodes.........If.n.is.an.intege |
| 3be0 | 72 2c 20 6e 6f 64 65 73 20 61 72 65 20 66 72 6f 6d 20 60 72 61 6e 67 65 28 6e 29 60 2e 0a 20 20 | r,.nodes.are.from.`range(n)`.... |
| 3c00 | 20 20 20 20 20 20 49 66 20 6e 20 69 73 20 61 20 63 6f 6e 74 61 69 6e 65 72 20 6f 66 20 6e 6f 64 | ......If.n.is.a.container.of.nod |
| 3c20 | 65 73 2c 20 74 68 6f 73 65 20 6e 6f 64 65 73 20 61 70 70 65 61 72 20 69 6e 20 74 68 65 20 67 72 | es,.those.nodes.appear.in.the.gr |
| 3c40 | 61 70 68 2e 0a 20 20 20 20 20 20 20 20 57 61 72 6e 69 6e 67 3a 20 6e 20 69 73 20 6e 6f 74 20 63 | aph..........Warning:.n.is.not.c |
| 3c60 | 68 65 63 6b 65 64 20 66 6f 72 20 64 75 70 6c 69 63 61 74 65 73 20 61 6e 64 20 69 66 20 70 72 65 | hecked.for.duplicates.and.if.pre |
| 3c80 | 73 65 6e 74 20 74 68 65 0a 20 20 20 20 20 20 20 20 72 65 73 75 6c 74 69 6e 67 20 67 72 61 70 68 | sent.the.........resulting.graph |
| 3ca0 | 20 6d 61 79 20 6e 6f 74 20 62 65 20 61 73 20 64 65 73 69 72 65 64 2e 20 4d 61 6b 65 20 73 75 72 | .may.not.be.as.desired..Make.sur |
| 3cc0 | 65 20 79 6f 75 20 68 61 76 65 20 6e 6f 20 64 75 70 6c 69 63 61 74 65 73 2e 0a 20 20 20 20 63 72 | e.you.have.no.duplicates......cr |
| 3ce0 | 65 61 74 65 5f 75 73 69 6e 67 20 3a 20 4e 65 74 77 6f 72 6b 58 20 67 72 61 70 68 20 63 6f 6e 73 | eate_using.:.NetworkX.graph.cons |
| 3d00 | 74 72 75 63 74 6f 72 2c 20 6f 70 74 69 6f 6e 61 6c 20 28 64 65 66 61 75 6c 74 3d 6e 78 2e 47 72 | tructor,.optional.(default=nx.Gr |
| 3d20 | 61 70 68 29 0a 20 20 20 20 20 20 20 47 72 61 70 68 20 74 79 70 65 20 74 6f 20 63 72 65 61 74 65 | aph)........Graph.type.to.create |
| 3d40 | 2e 20 49 66 20 67 72 61 70 68 20 69 6e 73 74 61 6e 63 65 2c 20 74 68 65 6e 20 63 6c 65 61 72 65 | ..If.graph.instance,.then.cleare |
| 3d60 | 64 20 62 65 66 6f 72 65 20 70 6f 70 75 6c 61 74 65 64 2e 0a 0a 20 20 20 20 4e 6f 74 65 73 0a 20 | d.before.populated.......Notes.. |
| 3d80 | 20 20 20 2d 2d 2d 2d 2d 0a 20 20 20 20 49 66 20 63 72 65 61 74 65 5f 75 73 69 6e 67 20 69 73 20 | ...-----.....If.create_using.is. |
| 3da0 | 64 69 72 65 63 74 65 64 2c 20 74 68 65 20 64 69 72 65 63 74 69 6f 6e 20 69 73 20 69 6e 20 69 6e | directed,.the.direction.is.in.in |
| 3dc0 | 63 72 65 61 73 69 6e 67 20 6f 72 64 65 72 2e 0a 0a 20 20 20 20 54 a9 01 da 06 63 79 63 6c 69 63 | creasing.order.......T....cyclic |
| 3de0 | a9 03 72 10 00 00 00 72 2f 00 00 00 72 06 00 00 00 a9 05 72 23 00 00 00 72 30 00 00 00 72 58 00 | ..r....r/...r......r#...r0...rX. |
| 3e00 | 00 00 72 25 00 00 00 72 31 00 00 00 73 05 00 00 00 20 20 20 20 20 72 2a 00 00 00 72 0e 00 00 00 | ..r%...r1...s.........r*...r.... |
| 3e20 | 72 0e 00 00 00 ca 01 00 00 73 33 00 00 00 80 00 f0 34 00 10 11 81 48 80 41 80 75 dc 08 13 90 45 | r........s3......4....H.A.u....E |
| 3e40 | 98 3c d3 08 28 80 41 d8 04 05 d7 04 14 d1 04 14 94 58 98 65 a8 44 d4 15 31 d4 04 32 d8 0b 0c 80 | .<..(.A..........X.e.D..1..2.... |
| 3e60 | 48 72 32 00 00 00 63 02 00 00 00 00 00 00 00 00 00 00 00 06 00 00 00 03 00 00 00 f3 9e 01 00 00 | Hr2...c......................... |
| 3e80 | 97 00 7c 00 64 01 6b 02 00 00 72 0b 74 01 00 00 00 00 00 00 00 00 64 02 ab 01 00 00 00 00 00 00 | ..|.d.k...r.t.........d......... |
| 3ea0 | 82 01 74 03 00 00 00 00 00 00 00 00 64 01 7c 01 ab 02 00 00 00 00 00 00 7d 02 7c 02 6a 05 00 00 | ..t.........d.|.........}.|.j... |
| 3ec0 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ab 00 00 00 00 00 00 00 72 0b 74 01 00 00 00 00 | ........................r.t..... |
| 3ee0 | 00 00 00 00 64 03 ab 01 00 00 00 00 00 00 82 01 7c 02 6a 07 00 00 00 00 00 00 00 00 00 00 00 00 | ....d...........|.j............. |
| 3f00 | 00 00 00 00 00 00 ab 00 00 00 00 00 00 00 72 0b 74 01 00 00 00 00 00 00 00 00 64 04 ab 01 00 00 | ..............r.t.........d..... |
| 3f20 | 00 00 00 00 82 01 7c 02 6a 09 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 64 01 64 05 | ......|.j...................d.d. |
| 3f40 | ab 02 00 00 00 00 00 00 01 00 64 06 7d 03 74 0b 00 00 00 00 00 00 00 00 7c 00 ab 01 00 00 00 00 | ..........d.}.t.........|....... |
| 3f60 | 00 00 44 00 5d 58 00 00 7d 04 67 00 7d 05 7c 02 6a 0d 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | ..D.]X..}.g.}.|.j............... |
| 3f80 | 00 00 00 00 ab 00 00 00 00 00 00 00 44 00 5d 30 00 00 5c 02 00 00 7d 06 7d 07 7c 05 6a 0f 00 00 | ............D.]0..\...}.}.|.j... |
| 3fa0 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 06 7c 03 66 02 ab 01 00 00 00 00 00 00 01 00 | ................|.|.f........... |
| 3fc0 | 7c 05 6a 0f 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 07 7c 03 66 02 ab 01 00 00 | |.j...................|.|.f..... |
| 3fe0 | 00 00 00 00 01 00 7c 03 64 05 7a 0d 00 00 7d 03 8c 32 04 00 7c 02 6a 11 00 00 00 00 00 00 00 00 | ......|.d.z...}..2..|.j......... |
| 4000 | 00 00 00 00 00 00 00 00 00 00 7c 05 ab 01 00 00 00 00 00 00 01 00 8c 5a 04 00 7c 02 53 00 29 07 | ..........|............Z..|.S.). |
| 4020 | 61 25 06 00 00 52 65 74 75 72 6e 73 20 74 68 65 20 68 69 65 72 61 72 63 68 69 63 61 6c 6c 79 20 | a%...Returns.the.hierarchically. |
| 4040 | 63 6f 6e 73 74 72 75 63 74 65 64 20 44 6f 72 6f 67 6f 76 74 73 65 76 2d 2d 47 6f 6c 74 73 65 76 | constructed.Dorogovtsev--Goltsev |
| 4060 | 2d 2d 4d 65 6e 64 65 73 20 67 72 61 70 68 2e 0a 0a 20 20 20 20 54 68 65 20 44 6f 72 6f 67 6f 76 | --Mendes.graph.......The.Dorogov |
| 4080 | 74 73 65 76 2d 2d 47 6f 6c 74 73 65 76 2d 2d 4d 65 6e 64 65 73 20 5b 31 5d 5f 20 70 72 6f 63 65 | tsev--Goltsev--Mendes.[1]_.proce |
| 40a0 | 64 75 72 65 20 64 65 74 65 72 6d 69 6e 69 73 74 69 63 61 6c 6c 79 20 70 72 6f 64 75 63 65 73 20 | dure.deterministically.produces. |
| 40c0 | 61 0a 20 20 20 20 73 63 61 6c 65 2d 66 72 65 65 20 67 72 61 70 68 20 77 69 74 68 20 60 60 33 2f | a.....scale-free.graph.with.``3/ |
| 40e0 | 32 20 2a 20 28 33 2a 2a 28 6e 2d 31 29 20 2b 20 31 29 60 60 20 6e 6f 64 65 73 0a 20 20 20 20 61 | 2.*.(3**(n-1).+.1)``.nodes.....a |
| 4100 | 6e 64 20 60 60 33 2a 2a 6e 60 60 20 65 64 67 65 73 20 66 6f 72 20 61 20 67 69 76 65 6e 20 60 6e | nd.``3**n``.edges.for.a.given.`n |
| 4120 | 60 2e 0a 0a 20 20 20 20 4e 6f 74 65 20 74 68 61 74 20 60 6e 60 20 64 65 6e 6f 74 65 73 20 74 68 | `.......Note.that.`n`.denotes.th |
| 4140 | 65 20 6e 75 6d 62 65 72 20 6f 66 20 74 69 6d 65 73 20 74 68 65 20 73 74 61 74 65 20 74 72 61 6e | e.number.of.times.the.state.tran |
| 4160 | 73 69 74 69 6f 6e 20 69 73 20 61 70 70 6c 69 65 64 2c 0a 20 20 20 20 73 74 61 72 74 69 6e 67 20 | sition.is.applied,.....starting. |
| 4180 | 66 72 6f 6d 20 74 68 65 20 62 61 73 65 20 67 72 61 70 68 20 77 69 74 68 20 60 60 6e 20 3d 20 30 | from.the.base.graph.with.``n.=.0 |
| 41a0 | 60 60 20 28 6e 6f 20 74 72 61 6e 73 69 74 69 6f 6e 73 29 2c 20 61 73 20 69 6e 20 5b 32 5d 5f 2e | ``.(no.transitions),.as.in.[2]_. |
| 41c0 | 0a 20 20 20 20 54 68 69 73 20 69 73 20 64 69 66 66 65 72 65 6e 74 20 66 72 6f 6d 20 74 68 65 20 | .....This.is.different.from.the. |
| 41e0 | 70 61 72 61 6d 65 74 65 72 20 60 60 74 20 3d 20 6e 20 2d 20 31 60 60 20 69 6e 20 5b 31 5d 5f 2e | parameter.``t.=.n.-.1``.in.[1]_. |
| 4200 | 0a 0a 20 20 20 20 2e 2e 20 70 6c 6f 74 3a 3a 0a 0a 20 20 20 20 20 20 20 20 3e 3e 3e 20 6e 78 2e | .........plot::..........>>>.nx. |
| 4220 | 64 72 61 77 28 6e 78 2e 64 6f 72 6f 67 6f 76 74 73 65 76 5f 67 6f 6c 74 73 65 76 5f 6d 65 6e 64 | draw(nx.dorogovtsev_goltsev_mend |
| 4240 | 65 73 5f 67 72 61 70 68 28 33 29 29 0a 0a 20 20 20 20 50 61 72 61 6d 65 74 65 72 73 0a 20 20 20 | es_graph(3))......Parameters.... |
| 4260 | 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 6e 20 3a 20 69 6e 74 65 67 65 72 0a 20 20 20 20 | .----------.....n.:.integer..... |
| 4280 | 20 20 20 20 54 68 65 20 67 65 6e 65 72 61 74 69 6f 6e 20 6e 75 6d 62 65 72 2e 0a 0a 20 20 20 20 | ....The.generation.number....... |
| 42a0 | 63 72 65 61 74 65 5f 75 73 69 6e 67 20 3a 20 4e 65 74 77 6f 72 6b 58 20 67 72 61 70 68 20 63 6f | create_using.:.NetworkX.graph.co |
| 42c0 | 6e 73 74 72 75 63 74 6f 72 2c 20 6f 70 74 69 6f 6e 61 6c 20 28 64 65 66 61 75 6c 74 3d 6e 78 2e | nstructor,.optional.(default=nx. |
| 42e0 | 47 72 61 70 68 29 0a 20 20 20 20 20 20 20 20 47 72 61 70 68 20 74 79 70 65 20 74 6f 20 63 72 65 | Graph).........Graph.type.to.cre |
| 4300 | 61 74 65 2e 20 44 69 72 65 63 74 65 64 20 67 72 61 70 68 73 20 61 6e 64 20 6d 75 6c 74 69 67 72 | ate..Directed.graphs.and.multigr |
| 4320 | 61 70 68 73 20 61 72 65 20 6e 6f 74 20 73 75 70 70 6f 72 74 65 64 2e 0a 0a 20 20 20 20 52 65 74 | aphs.are.not.supported.......Ret |
| 4340 | 75 72 6e 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 47 20 3a 20 4e 65 74 77 6f 72 6b | urns.....-------.....G.:.Network |
| 4360 | 58 20 60 47 72 61 70 68 60 0a 0a 20 20 20 20 52 61 69 73 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d | X.`Graph`......Raises.....------ |
| 4380 | 0a 20 20 20 20 4e 65 74 77 6f 72 6b 58 45 72 72 6f 72 0a 20 20 20 20 20 20 20 20 49 66 20 60 6e | .....NetworkXError.........If.`n |
| 43a0 | 60 20 69 73 20 6c 65 73 73 20 74 68 61 6e 20 7a 65 72 6f 2e 0a 0a 20 20 20 20 20 20 20 20 49 66 | `.is.less.than.zero...........If |
| 43c0 | 20 60 63 72 65 61 74 65 5f 75 73 69 6e 67 60 20 69 73 20 61 20 64 69 72 65 63 74 65 64 20 67 72 | .`create_using`.is.a.directed.gr |
| 43e0 | 61 70 68 20 6f 72 20 6d 75 6c 74 69 67 72 61 70 68 2e 0a 0a 20 20 20 20 45 78 61 6d 70 6c 65 73 | aph.or.multigraph.......Examples |
| 4400 | 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 3e 3e 3e 20 47 20 3d 20 6e 78 2e 64 6f 72 | .....--------.....>>>.G.=.nx.dor |
| 4420 | 6f 67 6f 76 74 73 65 76 5f 67 6f 6c 74 73 65 76 5f 6d 65 6e 64 65 73 5f 67 72 61 70 68 28 33 29 | ogovtsev_goltsev_mendes_graph(3) |
| 4440 | 0a 20 20 20 20 3e 3e 3e 20 47 2e 6e 75 6d 62 65 72 5f 6f 66 5f 6e 6f 64 65 73 28 29 0a 20 20 20 | .....>>>.G.number_of_nodes().... |
| 4460 | 20 31 35 0a 20 20 20 20 3e 3e 3e 20 47 2e 6e 75 6d 62 65 72 5f 6f 66 5f 65 64 67 65 73 28 29 0a | .15.....>>>.G.number_of_edges(). |
| 4480 | 20 20 20 20 32 37 0a 20 20 20 20 3e 3e 3e 20 6e 78 2e 69 73 5f 70 6c 61 6e 61 72 28 47 29 0a 20 | ....27.....>>>.nx.is_planar(G).. |
| 44a0 | 20 20 20 54 72 75 65 0a 0a 20 20 20 20 52 65 66 65 72 65 6e 63 65 73 0a 20 20 20 20 2d 2d 2d 2d | ...True......References.....---- |
| 44c0 | 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 2e 2e 20 5b 31 5d 20 53 2e 20 4e 2e 20 44 6f 72 6f 67 6f 76 74 | ------........[1].S..N..Dorogovt |
| 44e0 | 73 65 76 2c 20 41 2e 20 56 2e 20 47 6f 6c 74 73 65 76 20 61 6e 64 20 4a 2e 20 46 2e 20 46 2e 20 | sev,.A..V..Goltsev.and.J..F..F.. |
| 4500 | 4d 65 6e 64 65 73 2c 0a 20 20 20 20 20 20 20 20 22 50 73 65 75 64 6f 66 72 61 63 74 61 6c 20 73 | Mendes,........."Pseudofractal.s |
| 4520 | 63 61 6c 65 2d 66 72 65 65 20 77 65 62 22 2c 20 50 68 79 73 69 63 61 6c 20 52 65 76 69 65 77 20 | cale-free.web",.Physical.Review. |
| 4540 | 45 20 36 35 2c 20 30 36 36 31 32 32 2c 20 32 30 30 32 2e 0a 20 20 20 20 20 20 20 20 68 74 74 70 | E.65,.066122,.2002..........http |
| 4560 | 73 3a 2f 2f 61 72 78 69 76 2e 6f 72 67 2f 70 64 66 2f 63 6f 6e 64 2d 6d 61 74 2f 30 31 31 32 31 | s://arxiv.org/pdf/cond-mat/01121 |
| 4580 | 34 33 2e 70 64 66 0a 20 20 20 20 2e 2e 20 5b 32 5d 20 57 65 69 73 73 74 65 69 6e 2c 20 45 72 69 | 43.pdf........[2].Weisstein,.Eri |
| 45a0 | 63 20 57 2e 20 22 44 6f 72 6f 67 6f 76 74 73 65 76 2d 2d 47 6f 6c 74 73 65 76 2d 2d 4d 65 6e 64 | c.W.."Dorogovtsev--Goltsev--Mend |
| 45c0 | 65 73 20 47 72 61 70 68 22 2e 0a 20 20 20 20 20 20 20 20 46 72 6f 6d 20 4d 61 74 68 57 6f 72 6c | es.Graph"..........From.MathWorl |
| 45e0 | 64 2d 2d 41 20 57 6f 6c 66 72 61 6d 20 57 65 62 20 52 65 73 6f 75 72 63 65 2e 0a 20 20 20 20 20 | d--A.Wolfram.Web.Resource....... |
| 4600 | 20 20 20 68 74 74 70 73 3a 2f 2f 6d 61 74 68 77 6f 72 6c 64 2e 77 6f 6c 66 72 61 6d 2e 63 6f 6d | ...https://mathworld.wolfram.com |
| 4620 | 2f 44 6f 72 6f 67 6f 76 74 73 65 76 2d 47 6f 6c 74 73 65 76 2d 4d 65 6e 64 65 73 47 72 61 70 68 | /Dorogovtsev-Goltsev-MendesGraph |
| 4640 | 2e 68 74 6d 6c 0a 20 20 20 20 72 02 00 00 00 7a 24 6e 20 6d 75 73 74 20 62 65 20 67 72 65 61 74 | .html.....r....z$n.must.be.great |
| 4660 | 65 72 20 74 68 61 6e 20 6f 72 20 65 71 75 61 6c 20 74 6f 20 30 7a 1c 64 69 72 65 63 74 65 64 20 | er.than.or.equal.to.0z.directed. |
| 4680 | 67 72 61 70 68 20 6e 6f 74 20 73 75 70 70 6f 72 74 65 64 7a 18 6d 75 6c 74 69 67 72 61 70 68 20 | graph.not.supportedz.multigraph. |
| 46a0 | 6e 6f 74 20 73 75 70 70 6f 72 74 65 64 72 47 00 00 00 72 34 00 00 00 29 09 72 04 00 00 00 72 10 | not.supportedrG...r4...).r....r. |
| 46c0 | 00 00 00 72 50 00 00 00 da 0d 69 73 5f 6d 75 6c 74 69 67 72 61 70 68 72 51 00 00 00 72 1e 00 00 | ...rP.....is_multigraphrQ...r... |
| 46e0 | 00 72 53 00 00 00 72 21 00 00 00 72 2f 00 00 00 29 08 72 23 00 00 00 72 30 00 00 00 72 31 00 00 | .rS...r!...r/...).r#...r0...r1.. |
| 4700 | 00 da 08 6e 65 77 5f 6e 6f 64 65 72 58 00 00 00 da 09 6e 65 77 5f 65 64 67 65 73 72 4c 00 00 00 | ...new_noderX.....new_edgesrL... |
| 4720 | 72 4d 00 00 00 73 08 00 00 00 20 20 20 20 20 20 20 20 72 2a 00 00 00 72 0f 00 00 00 72 0f 00 00 | rM...s............r*...r....r... |
| 4740 | 00 ea 01 00 00 73 d7 00 00 00 80 00 f0 6c 01 00 08 09 88 31 82 75 dc 0e 1b d0 1c 42 d3 0e 43 d0 | .....s.......l.....1.u.....B..C. |
| 4760 | 08 43 e4 08 13 90 41 90 7c d3 08 24 80 41 d8 07 08 87 7d 81 7d 84 7f dc 0e 1b d0 1c 3a d3 0e 3b | .C....A.|..$.A....}.}.......:..; |
| 4780 | d0 08 3b d8 07 08 87 7f 81 7f d4 07 18 dc 0e 1b d0 1c 36 d3 0e 37 d0 08 37 e0 04 05 87 4a 81 4a | ..;...............6..7..7....J.J |
| 47a0 | 88 71 90 21 d4 04 14 d8 0f 10 80 48 dc 0d 12 90 31 8b 58 f2 00 07 05 24 88 01 d8 14 16 88 09 d8 | .q.!.......H....1.X....$........ |
| 47c0 | 14 15 97 47 91 47 93 49 f2 00 03 09 1a 89 44 88 41 88 71 d8 0c 15 d7 0c 1c d1 0c 1c 98 61 a0 18 | ...G.G.I......D.A.q..........a.. |
| 47e0 | 98 5d d4 0c 2b d8 0c 15 d7 0c 1c d1 0c 1c 98 61 a0 18 98 5d d4 0c 2b d8 0c 14 98 01 89 4d 89 48 | .]..+..........a...]..+......M.H |
| 4800 | f0 07 03 09 1a f0 0a 00 09 0a d7 08 18 d1 08 18 98 19 d5 08 23 f0 0f 07 05 24 f0 10 00 0c 0d 80 | ....................#....$...... |
| 4820 | 48 72 32 00 00 00 63 03 00 00 00 00 00 00 00 00 00 00 00 04 00 00 00 03 00 00 00 f3 c8 00 00 00 | Hr2...c......................... |
| 4840 | 97 00 7c 01 80 08 02 00 7c 02 ab 00 00 00 00 00 00 00 7d 03 6e 41 74 01 00 00 00 00 00 00 00 00 | ..|.....|.........}.nAt......... |
| 4860 | 7c 01 74 02 00 00 00 00 00 00 00 00 ab 02 00 00 00 00 00 00 72 08 02 00 7c 01 ab 00 00 00 00 00 | |.t.................r...|....... |
| 4880 | 00 00 7d 03 6e 29 74 05 00 00 00 00 00 00 00 00 7c 01 64 01 ab 02 00 00 00 00 00 00 73 0b 74 07 | ..}.n)t.........|.d.........s.t. |
| 48a0 | 00 00 00 00 00 00 00 00 64 02 ab 01 00 00 00 00 00 00 82 01 7c 01 6a 09 00 00 00 00 00 00 00 00 | ........d...........|.j......... |
| 48c0 | 00 00 00 00 00 00 00 00 00 00 ab 00 00 00 00 00 00 00 01 00 7c 01 7d 03 7c 00 5c 02 00 00 7d 04 | ....................|.}.|.\...}. |
| 48e0 | 7d 05 7c 03 6a 0b 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 05 ab 01 00 00 00 00 | }.|.j...................|....... |
| 4900 | 00 00 01 00 7c 03 53 00 29 03 61 64 0b 00 00 52 65 74 75 72 6e 73 20 74 68 65 20 65 6d 70 74 79 | ....|.S.).ad...Returns.the.empty |
| 4920 | 20 67 72 61 70 68 20 77 69 74 68 20 6e 20 6e 6f 64 65 73 20 61 6e 64 20 7a 65 72 6f 20 65 64 67 | .graph.with.n.nodes.and.zero.edg |
| 4940 | 65 73 2e 0a 0a 20 20 20 20 2e 2e 20 70 6c 6f 74 3a 3a 0a 0a 20 20 20 20 20 20 20 20 3e 3e 3e 20 | es..........plot::..........>>>. |
| 4960 | 6e 78 2e 64 72 61 77 28 6e 78 2e 65 6d 70 74 79 5f 67 72 61 70 68 28 35 29 29 0a 0a 20 20 20 20 | nx.draw(nx.empty_graph(5))...... |
| 4980 | 50 61 72 61 6d 65 74 65 72 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 6e 20 | Parameters.....----------.....n. |
| 49a0 | 3a 20 69 6e 74 20 6f 72 20 69 74 65 72 61 62 6c 65 20 63 6f 6e 74 61 69 6e 65 72 20 6f 66 20 6e | :.int.or.iterable.container.of.n |
| 49c0 | 6f 64 65 73 20 28 64 65 66 61 75 6c 74 20 3d 20 30 29 0a 20 20 20 20 20 20 20 20 49 66 20 6e 20 | odes.(default.=.0).........If.n. |
| 49e0 | 69 73 20 61 6e 20 69 6e 74 65 67 65 72 2c 20 6e 6f 64 65 73 20 61 72 65 20 66 72 6f 6d 20 60 72 | is.an.integer,.nodes.are.from.`r |
| 4a00 | 61 6e 67 65 28 6e 29 60 2e 0a 20 20 20 20 20 20 20 20 49 66 20 6e 20 69 73 20 61 20 63 6f 6e 74 | ange(n)`..........If.n.is.a.cont |
| 4a20 | 61 69 6e 65 72 20 6f 66 20 6e 6f 64 65 73 2c 20 74 68 6f 73 65 20 6e 6f 64 65 73 20 61 70 70 65 | ainer.of.nodes,.those.nodes.appe |
| 4a40 | 61 72 20 69 6e 20 74 68 65 20 67 72 61 70 68 2e 0a 20 20 20 20 63 72 65 61 74 65 5f 75 73 69 6e | ar.in.the.graph......create_usin |
| 4a60 | 67 20 3a 20 47 72 61 70 68 20 49 6e 73 74 61 6e 63 65 2c 20 43 6f 6e 73 74 72 75 63 74 6f 72 20 | g.:.Graph.Instance,.Constructor. |
| 4a80 | 6f 72 20 4e 6f 6e 65 0a 20 20 20 20 20 20 20 20 49 6e 64 69 63 61 74 6f 72 20 6f 66 20 74 79 70 | or.None.........Indicator.of.typ |
| 4aa0 | 65 20 6f 66 20 67 72 61 70 68 20 74 6f 20 72 65 74 75 72 6e 2e 0a 20 20 20 20 20 20 20 20 49 66 | e.of.graph.to.return..........If |
| 4ac0 | 20 61 20 47 72 61 70 68 2d 74 79 70 65 20 69 6e 73 74 61 6e 63 65 2c 20 74 68 65 6e 20 63 6c 65 | .a.Graph-type.instance,.then.cle |
| 4ae0 | 61 72 20 61 6e 64 20 75 73 65 20 69 74 2e 0a 20 20 20 20 20 20 20 20 49 66 20 4e 6f 6e 65 2c 20 | ar.and.use.it..........If.None,. |
| 4b00 | 75 73 65 20 74 68 65 20 60 64 65 66 61 75 6c 74 60 20 63 6f 6e 73 74 72 75 63 74 6f 72 2e 0a 20 | use.the.`default`.constructor... |
| 4b20 | 20 20 20 20 20 20 20 49 66 20 61 20 63 6f 6e 73 74 72 75 63 74 6f 72 2c 20 63 61 6c 6c 20 69 74 | .......If.a.constructor,.call.it |
| 4b40 | 20 74 6f 20 63 72 65 61 74 65 20 61 6e 20 65 6d 70 74 79 20 67 72 61 70 68 2e 0a 20 20 20 20 64 | .to.create.an.empty.graph......d |
| 4b60 | 65 66 61 75 6c 74 20 3a 20 47 72 61 70 68 20 63 6f 6e 73 74 72 75 63 74 6f 72 20 28 6f 70 74 69 | efault.:.Graph.constructor.(opti |
| 4b80 | 6f 6e 61 6c 2c 20 64 65 66 61 75 6c 74 20 3d 20 6e 78 2e 47 72 61 70 68 29 0a 20 20 20 20 20 20 | onal,.default.=.nx.Graph)....... |
| 4ba0 | 20 20 54 68 65 20 63 6f 6e 73 74 72 75 63 74 6f 72 20 74 6f 20 75 73 65 20 69 66 20 63 72 65 61 | ..The.constructor.to.use.if.crea |
| 4bc0 | 74 65 5f 75 73 69 6e 67 20 69 73 20 4e 6f 6e 65 2e 0a 20 20 20 20 20 20 20 20 49 66 20 4e 6f 6e | te_using.is.None..........If.Non |
| 4be0 | 65 2c 20 74 68 65 6e 20 6e 78 2e 47 72 61 70 68 20 69 73 20 75 73 65 64 2e 0a 20 20 20 20 20 20 | e,.then.nx.Graph.is.used........ |
| 4c00 | 20 20 54 68 69 73 20 69 73 20 75 73 65 64 20 77 68 65 6e 20 70 61 73 73 69 6e 67 20 61 6e 20 75 | ..This.is.used.when.passing.an.u |
| 4c20 | 6e 6b 6e 6f 77 6e 20 60 63 72 65 61 74 65 5f 75 73 69 6e 67 60 20 76 61 6c 75 65 0a 20 20 20 20 | nknown.`create_using`.value..... |
| 4c40 | 20 20 20 20 74 68 72 6f 75 67 68 20 79 6f 75 72 20 68 6f 6d 65 2d 67 72 6f 77 6e 20 66 75 6e 63 | ....through.your.home-grown.func |
| 4c60 | 74 69 6f 6e 20 74 6f 20 60 65 6d 70 74 79 5f 67 72 61 70 68 60 20 61 6e 64 0a 20 20 20 20 20 20 | tion.to.`empty_graph`.and....... |
| 4c80 | 20 20 79 6f 75 20 77 61 6e 74 20 61 20 64 65 66 61 75 6c 74 20 63 6f 6e 73 74 72 75 63 74 6f 72 | ..you.want.a.default.constructor |
| 4ca0 | 20 6f 74 68 65 72 20 74 68 61 6e 20 6e 78 2e 47 72 61 70 68 2e 0a 0a 20 20 20 20 45 78 61 6d 70 | .other.than.nx.Graph.......Examp |
| 4cc0 | 6c 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 3e 3e 3e 20 47 20 3d 20 6e 78 2e | les.....--------.....>>>.G.=.nx. |
| 4ce0 | 65 6d 70 74 79 5f 67 72 61 70 68 28 31 30 29 0a 20 20 20 20 3e 3e 3e 20 47 2e 6e 75 6d 62 65 72 | empty_graph(10).....>>>.G.number |
| 4d00 | 5f 6f 66 5f 6e 6f 64 65 73 28 29 0a 20 20 20 20 31 30 0a 20 20 20 20 3e 3e 3e 20 47 2e 6e 75 6d | _of_nodes().....10.....>>>.G.num |
| 4d20 | 62 65 72 5f 6f 66 5f 65 64 67 65 73 28 29 0a 20 20 20 20 30 0a 20 20 20 20 3e 3e 3e 20 47 20 3d | ber_of_edges().....0.....>>>.G.= |
| 4d40 | 20 6e 78 2e 65 6d 70 74 79 5f 67 72 61 70 68 28 22 41 42 43 22 29 0a 20 20 20 20 3e 3e 3e 20 47 | .nx.empty_graph("ABC").....>>>.G |
| 4d60 | 2e 6e 75 6d 62 65 72 5f 6f 66 5f 6e 6f 64 65 73 28 29 0a 20 20 20 20 33 0a 20 20 20 20 3e 3e 3e | .number_of_nodes().....3.....>>> |
| 4d80 | 20 73 6f 72 74 65 64 28 47 29 0a 20 20 20 20 5b 27 41 27 2c 20 27 42 27 2c 20 27 43 27 5d 0a 0a | .sorted(G).....['A',.'B',.'C'].. |
| 4da0 | 20 20 20 20 4e 6f 74 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 0a 20 20 20 20 54 68 65 20 76 61 72 69 | ....Notes.....-----.....The.vari |
| 4dc0 | 61 62 6c 65 20 63 72 65 61 74 65 5f 75 73 69 6e 67 20 73 68 6f 75 6c 64 20 62 65 20 61 20 47 72 | able.create_using.should.be.a.Gr |
| 4de0 | 61 70 68 20 43 6f 6e 73 74 72 75 63 74 6f 72 20 6f 72 20 61 0a 20 20 20 20 22 67 72 61 70 68 22 | aph.Constructor.or.a....."graph" |
| 4e00 | 2d 6c 69 6b 65 20 6f 62 6a 65 63 74 2e 20 43 6f 6e 73 74 72 75 63 74 6f 72 73 2c 20 65 2e 67 2e | -like.object..Constructors,.e.g. |
| 4e20 | 20 60 6e 78 2e 47 72 61 70 68 60 20 6f 72 20 60 6e 78 2e 4d 75 6c 74 69 47 72 61 70 68 60 0a 20 | .`nx.Graph`.or.`nx.MultiGraph`.. |
| 4e40 | 20 20 20 77 69 6c 6c 20 62 65 20 75 73 65 64 20 74 6f 20 63 72 65 61 74 65 20 74 68 65 20 72 65 | ...will.be.used.to.create.the.re |
| 4e60 | 74 75 72 6e 65 64 20 67 72 61 70 68 2e 20 22 67 72 61 70 68 22 2d 6c 69 6b 65 20 6f 62 6a 65 63 | turned.graph.."graph"-like.objec |
| 4e80 | 74 73 0a 20 20 20 20 77 69 6c 6c 20 62 65 20 63 6c 65 61 72 65 64 20 28 6e 6f 64 65 73 20 61 6e | ts.....will.be.cleared.(nodes.an |
| 4ea0 | 64 20 65 64 67 65 73 20 77 69 6c 6c 20 62 65 20 72 65 6d 6f 76 65 64 29 20 61 6e 64 20 72 65 66 | d.edges.will.be.removed).and.ref |
| 4ec0 | 69 74 74 65 64 20 61 73 0a 20 20 20 20 61 6e 20 65 6d 70 74 79 20 22 67 72 61 70 68 22 20 77 69 | itted.as.....an.empty."graph".wi |
| 4ee0 | 74 68 20 6e 6f 64 65 73 20 73 70 65 63 69 66 69 65 64 20 69 6e 20 6e 2e 20 54 68 69 73 20 63 61 | th.nodes.specified.in.n..This.ca |
| 4f00 | 70 61 62 69 6c 69 74 79 0a 20 20 20 20 69 73 20 75 73 65 66 75 6c 20 66 6f 72 20 73 70 65 63 69 | pability.....is.useful.for.speci |
| 4f20 | 66 79 69 6e 67 20 74 68 65 20 63 6c 61 73 73 2d 6e 61 74 75 72 65 20 6f 66 20 74 68 65 20 72 65 | fying.the.class-nature.of.the.re |
| 4f40 | 73 75 6c 74 69 6e 67 20 65 6d 70 74 79 0a 20 20 20 20 22 67 72 61 70 68 22 20 28 69 2e 65 2e 20 | sulting.empty....."graph".(i.e.. |
| 4f60 | 47 72 61 70 68 2c 20 44 69 47 72 61 70 68 2c 20 4d 79 57 65 69 72 64 47 72 61 70 68 43 6c 61 73 | Graph,.DiGraph,.MyWeirdGraphClas |
| 4f80 | 73 2c 20 65 74 63 2e 29 2e 0a 0a 20 20 20 20 54 68 65 20 76 61 72 69 61 62 6c 65 20 63 72 65 61 | s,.etc.).......The.variable.crea |
| 4fa0 | 74 65 5f 75 73 69 6e 67 20 68 61 73 20 74 68 72 65 65 20 6d 61 69 6e 20 75 73 65 73 3a 0a 20 20 | te_using.has.three.main.uses:... |
| 4fc0 | 20 20 46 69 72 73 74 6c 79 2c 20 74 68 65 20 76 61 72 69 61 62 6c 65 20 63 72 65 61 74 65 5f 75 | ..Firstly,.the.variable.create_u |
| 4fe0 | 73 69 6e 67 20 63 61 6e 20 62 65 20 75 73 65 64 20 74 6f 20 63 72 65 61 74 65 20 61 6e 0a 20 20 | sing.can.be.used.to.create.an... |
| 5000 | 20 20 65 6d 70 74 79 20 64 69 67 72 61 70 68 2c 20 6d 75 6c 74 69 67 72 61 70 68 2c 20 65 74 63 | ..empty.digraph,.multigraph,.etc |
| 5020 | 2e 20 20 46 6f 72 20 65 78 61 6d 70 6c 65 2c 0a 0a 20 20 20 20 3e 3e 3e 20 6e 20 3d 20 31 30 0a | ...For.example,......>>>.n.=.10. |
| 5040 | 20 20 20 20 3e 3e 3e 20 47 20 3d 20 6e 78 2e 65 6d 70 74 79 5f 67 72 61 70 68 28 6e 2c 20 63 72 | ....>>>.G.=.nx.empty_graph(n,.cr |
| 5060 | 65 61 74 65 5f 75 73 69 6e 67 3d 6e 78 2e 44 69 47 72 61 70 68 29 0a 0a 20 20 20 20 77 69 6c 6c | eate_using=nx.DiGraph)......will |
| 5080 | 20 63 72 65 61 74 65 20 61 6e 20 65 6d 70 74 79 20 64 69 67 72 61 70 68 20 6f 6e 20 6e 20 6e 6f | .create.an.empty.digraph.on.n.no |
| 50a0 | 64 65 73 2e 0a 0a 20 20 20 20 53 65 63 6f 6e 64 6c 79 2c 20 6f 6e 65 20 63 61 6e 20 70 61 73 73 | des.......Secondly,.one.can.pass |
| 50c0 | 20 61 6e 20 65 78 69 73 74 69 6e 67 20 67 72 61 70 68 20 28 64 69 67 72 61 70 68 2c 20 6d 75 6c | .an.existing.graph.(digraph,.mul |
| 50e0 | 74 69 67 72 61 70 68 2c 0a 20 20 20 20 65 74 63 2e 29 20 76 69 61 20 63 72 65 61 74 65 5f 75 73 | tigraph,.....etc.).via.create_us |
| 5100 | 69 6e 67 2e 20 46 6f 72 20 65 78 61 6d 70 6c 65 2c 20 69 66 20 47 20 69 73 20 61 6e 20 65 78 69 | ing..For.example,.if.G.is.an.exi |
| 5120 | 73 74 69 6e 67 20 67 72 61 70 68 0a 20 20 20 20 28 72 65 73 70 2e 20 64 69 67 72 61 70 68 2c 20 | sting.graph.....(resp..digraph,. |
| 5140 | 6d 75 6c 74 69 67 72 61 70 68 2c 20 65 74 63 2e 29 2c 20 74 68 65 6e 20 65 6d 70 74 79 5f 67 72 | multigraph,.etc.),.then.empty_gr |
| 5160 | 61 70 68 28 6e 2c 20 63 72 65 61 74 65 5f 75 73 69 6e 67 3d 47 29 0a 20 20 20 20 77 69 6c 6c 20 | aph(n,.create_using=G).....will. |
| 5180 | 65 6d 70 74 79 20 47 20 28 69 2e 65 2e 20 64 65 6c 65 74 65 20 61 6c 6c 20 6e 6f 64 65 73 20 61 | empty.G.(i.e..delete.all.nodes.a |
| 51a0 | 6e 64 20 65 64 67 65 73 20 75 73 69 6e 67 20 47 2e 63 6c 65 61 72 28 29 29 0a 20 20 20 20 61 6e | nd.edges.using.G.clear()).....an |
| 51c0 | 64 20 74 68 65 6e 20 61 64 64 20 6e 20 6e 6f 64 65 73 20 61 6e 64 20 7a 65 72 6f 20 65 64 67 65 | d.then.add.n.nodes.and.zero.edge |
| 51e0 | 73 2c 20 61 6e 64 20 72 65 74 75 72 6e 20 74 68 65 20 6d 6f 64 69 66 69 65 64 20 67 72 61 70 68 | s,.and.return.the.modified.graph |
| 5200 | 2e 0a 0a 20 20 20 20 54 68 69 72 64 6c 79 2c 20 77 68 65 6e 20 63 6f 6e 73 74 72 75 63 74 69 6e | .......Thirdly,.when.constructin |
| 5220 | 67 20 79 6f 75 72 20 68 6f 6d 65 2d 67 72 6f 77 6e 20 67 72 61 70 68 20 63 72 65 61 74 69 6f 6e | g.your.home-grown.graph.creation |
| 5240 | 20 66 75 6e 63 74 69 6f 6e 0a 20 20 20 20 79 6f 75 20 63 61 6e 20 75 73 65 20 65 6d 70 74 79 5f | .function.....you.can.use.empty_ |
| 5260 | 67 72 61 70 68 20 74 6f 20 63 6f 6e 73 74 72 75 63 74 20 74 68 65 20 67 72 61 70 68 20 62 79 20 | graph.to.construct.the.graph.by. |
| 5280 | 70 61 73 73 69 6e 67 20 61 20 75 73 65 72 0a 20 20 20 20 64 65 66 69 6e 65 64 20 63 72 65 61 74 | passing.a.user.....defined.creat |
| 52a0 | 65 5f 75 73 69 6e 67 20 74 6f 20 65 6d 70 74 79 5f 67 72 61 70 68 2e 20 49 6e 20 74 68 69 73 20 | e_using.to.empty_graph..In.this. |
| 52c0 | 63 61 73 65 2c 20 69 66 20 79 6f 75 20 77 61 6e 74 20 74 68 65 0a 20 20 20 20 64 65 66 61 75 6c | case,.if.you.want.the.....defaul |
| 52e0 | 74 20 63 6f 6e 73 74 72 75 63 74 6f 72 20 74 6f 20 62 65 20 6f 74 68 65 72 20 74 68 61 6e 20 6e | t.constructor.to.be.other.than.n |
| 5300 | 78 2e 47 72 61 70 68 2c 20 73 70 65 63 69 66 79 20 60 64 65 66 61 75 6c 74 60 2e 0a 0a 20 20 20 | x.Graph,.specify.`default`...... |
| 5320 | 20 3e 3e 3e 20 64 65 66 20 6d 79 67 72 61 70 68 28 6e 2c 20 63 72 65 61 74 65 5f 75 73 69 6e 67 | .>>>.def.mygraph(n,.create_using |
| 5340 | 3d 4e 6f 6e 65 29 3a 0a 20 20 20 20 2e 2e 2e 20 20 20 20 20 47 20 3d 20 6e 78 2e 65 6d 70 74 79 | =None):.............G.=.nx.empty |
| 5360 | 5f 67 72 61 70 68 28 6e 2c 20 63 72 65 61 74 65 5f 75 73 69 6e 67 2c 20 6e 78 2e 4d 75 6c 74 69 | _graph(n,.create_using,.nx.Multi |
| 5380 | 47 72 61 70 68 29 0a 20 20 20 20 2e 2e 2e 20 20 20 20 20 47 2e 61 64 64 5f 65 64 67 65 73 5f 66 | Graph).............G.add_edges_f |
| 53a0 | 72 6f 6d 28 5b 28 30 2c 20 31 29 2c 20 28 30 2c 20 31 29 5d 29 0a 20 20 20 20 2e 2e 2e 20 20 20 | rom([(0,.1),.(0,.1)])........... |
| 53c0 | 20 20 72 65 74 75 72 6e 20 47 0a 20 20 20 20 3e 3e 3e 20 47 20 3d 20 6d 79 67 72 61 70 68 28 33 | ..return.G.....>>>.G.=.mygraph(3 |
| 53e0 | 29 0a 20 20 20 20 3e 3e 3e 20 47 2e 69 73 5f 6d 75 6c 74 69 67 72 61 70 68 28 29 0a 20 20 20 20 | ).....>>>.G.is_multigraph()..... |
| 5400 | 54 72 75 65 0a 20 20 20 20 3e 3e 3e 20 47 20 3d 20 6d 79 67 72 61 70 68 28 33 2c 20 6e 78 2e 47 | True.....>>>.G.=.mygraph(3,.nx.G |
| 5420 | 72 61 70 68 29 0a 20 20 20 20 3e 3e 3e 20 47 2e 69 73 5f 6d 75 6c 74 69 67 72 61 70 68 28 29 0a | raph).....>>>.G.is_multigraph(). |
| 5440 | 20 20 20 20 46 61 6c 73 65 0a 0a 20 20 20 20 53 65 65 20 61 6c 73 6f 20 63 72 65 61 74 65 5f 65 | ....False......See.also.create_e |
| 5460 | 6d 70 74 79 5f 63 6f 70 79 28 47 29 2e 0a 0a 20 20 20 20 da 03 61 64 6a 7a 3b 63 72 65 61 74 65 | mpty_copy(G).........adjz;create |
| 5480 | 5f 75 73 69 6e 67 20 69 73 20 6e 6f 74 20 61 20 76 61 6c 69 64 20 4e 65 74 77 6f 72 6b 58 20 67 | _using.is.not.a.valid.NetworkX.g |
| 54a0 | 72 61 70 68 20 74 79 70 65 20 6f 72 20 69 6e 73 74 61 6e 63 65 29 06 da 0a 69 73 69 6e 73 74 61 | raph.type.or.instance)...isinsta |
| 54c0 | 6e 63 65 da 04 74 79 70 65 da 07 68 61 73 61 74 74 72 da 09 54 79 70 65 45 72 72 6f 72 da 05 63 | nce..type..hasattr..TypeError..c |
| 54e0 | 6c 65 61 72 72 44 00 00 00 29 06 72 23 00 00 00 72 30 00 00 00 da 07 64 65 66 61 75 6c 74 72 31 | learrD...).r#...r0.....defaultr1 |
| 5500 | 00 00 00 72 58 00 00 00 72 25 00 00 00 73 06 00 00 00 20 20 20 20 20 20 72 2a 00 00 00 72 10 00 | ...rX...r%...s..........r*...r.. |
| 5520 | 00 00 72 10 00 00 00 36 02 00 00 73 68 00 00 00 80 00 f0 66 02 00 08 14 d0 07 1b d9 0c 13 8b 49 | ..r....6...sh......f...........I |
| 5540 | 89 01 dc 09 13 90 4c a4 24 d4 09 27 d9 0c 18 8b 4e 89 01 dc 0d 14 90 5c a0 35 d4 0d 29 dc 0e 17 | ......L.$..'....N......\.5..)... |
| 5560 | d0 18 55 d3 0e 56 d0 08 56 f0 06 00 09 15 d7 08 1a d1 08 1a d4 08 1c d8 0c 18 88 01 e0 0f 10 81 | ..U..V..V....................... |
| 5580 | 48 80 41 80 75 d8 04 05 d7 04 14 d1 04 14 90 55 d4 04 1b d8 0b 0c 80 48 72 32 00 00 00 63 02 00 | H.A.u..........U.......Hr2...c.. |
| 55a0 | 00 00 00 00 00 00 00 00 00 00 09 00 00 00 03 00 00 00 f3 36 01 00 00 87 00 97 00 74 01 00 00 00 | ...................6.......t.... |
| 55c0 | 00 00 00 00 00 64 01 89 00 7a 05 00 00 7c 01 ab 02 00 00 00 00 00 00 7d 02 7c 02 6a 03 00 00 00 | .....d...z...|.........}.|.j.... |
| 55e0 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ab 00 00 00 00 00 00 00 72 0b 74 05 00 00 00 00 00 | .......................r.t...... |
| 5600 | 00 00 00 64 02 ab 01 00 00 00 00 00 00 82 01 7c 02 6a 07 00 00 00 00 00 00 00 00 00 00 00 00 00 | ...d...........|.j.............. |
| 5620 | 00 00 00 00 00 74 09 00 00 00 00 00 00 00 00 74 0b 00 00 00 00 00 00 00 00 89 00 ab 01 00 00 00 | .....t.........t................ |
| 5640 | 00 00 00 ab 01 00 00 00 00 00 00 ab 01 00 00 00 00 00 00 01 00 7c 02 6a 07 00 00 00 00 00 00 00 | .....................|.j........ |
| 5660 | 00 00 00 00 00 00 00 00 00 00 00 74 09 00 00 00 00 00 00 00 00 74 0b 00 00 00 00 00 00 00 00 89 | ...........t.........t.......... |
| 5680 | 00 64 01 89 00 7a 05 00 00 ab 02 00 00 00 00 00 00 ab 01 00 00 00 00 00 00 ab 01 00 00 00 00 00 | .d...z.......................... |
| 56a0 | 00 01 00 7c 02 6a 07 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 88 00 66 01 64 03 84 | ...|.j.....................f.d.. |
| 56c0 | 08 74 0b 00 00 00 00 00 00 00 00 89 00 ab 01 00 00 00 00 00 00 44 00 ab 00 00 00 00 00 00 00 ab | .t...................D.......... |
| 56e0 | 01 00 00 00 00 00 00 01 00 7c 02 53 00 29 04 7a e5 52 65 74 75 72 6e 73 20 74 68 65 20 4c 61 64 | .........|.S.).z.Returns.the.Lad |
| 5700 | 64 65 72 20 67 72 61 70 68 20 6f 66 20 6c 65 6e 67 74 68 20 6e 2e 0a 0a 20 20 20 20 54 68 69 73 | der.graph.of.length.n.......This |
| 5720 | 20 69 73 20 74 77 6f 20 70 61 74 68 73 20 6f 66 20 6e 20 6e 6f 64 65 73 2c 20 77 69 74 68 0a 20 | .is.two.paths.of.n.nodes,.with.. |
| 5740 | 20 20 20 65 61 63 68 20 70 61 69 72 20 63 6f 6e 6e 65 63 74 65 64 20 62 79 20 61 20 73 69 6e 67 | ...each.pair.connected.by.a.sing |
| 5760 | 6c 65 20 65 64 67 65 2e 0a 0a 20 20 20 20 4e 6f 64 65 20 6c 61 62 65 6c 73 20 61 72 65 20 74 68 | le.edge.......Node.labels.are.th |
| 5780 | 65 20 69 6e 74 65 67 65 72 73 20 30 20 74 6f 20 32 2a 6e 20 2d 20 31 2e 0a 0a 20 20 20 20 2e 2e | e.integers.0.to.2*n.-.1......... |
| 57a0 | 20 70 6c 6f 74 3a 3a 0a 0a 20 20 20 20 20 20 20 20 3e 3e 3e 20 6e 78 2e 64 72 61 77 28 6e 78 2e | .plot::..........>>>.nx.draw(nx. |
| 57c0 | 6c 61 64 64 65 72 5f 67 72 61 70 68 28 35 29 29 0a 0a 20 20 20 20 72 34 00 00 00 72 4a 00 00 00 | ladder_graph(5))......r4...rJ... |
| 57e0 | 63 01 00 00 00 00 00 00 00 00 00 00 00 04 00 00 00 33 00 00 00 f3 2c 00 00 00 95 01 4b 00 01 00 | c................3....,.....K... |
| 5800 | 97 00 7c 00 5d 0b 00 00 7d 01 7c 01 7c 01 89 02 7a 00 00 00 66 02 96 01 97 01 01 00 8c 0d 04 00 | ..|.]...}.|.|...z...f........... |
| 5820 | 79 00 ad 03 77 01 72 36 00 00 00 a9 00 29 03 72 38 00 00 00 72 4d 00 00 00 72 23 00 00 00 73 03 | y...w.r6.....).r8...rM...r#...s. |
| 5840 | 00 00 00 20 20 80 72 2a 00 00 00 72 3e 00 00 00 7a 1f 6c 61 64 64 65 72 5f 67 72 61 70 68 2e 3c | ......r*...r>...z.ladder_graph.< |
| 5860 | 6c 6f 63 61 6c 73 3e 2e 3c 67 65 6e 65 78 70 72 3e ac 02 00 00 73 19 00 00 00 f8 e8 00 f8 80 00 | locals>.<genexpr>....s.......... |
| 5880 | d2 14 32 a0 41 90 61 98 11 98 51 99 15 94 5a d1 14 32 f9 73 04 00 00 00 83 11 14 01 29 06 72 10 | ..2.A.a...Q...Z..2.s........).r. |
| 58a0 | 00 00 00 72 50 00 00 00 72 04 00 00 00 72 2f 00 00 00 72 06 00 00 00 72 1e 00 00 00 72 5a 00 00 | ...rP...r....r/...r....r....rZ.. |
| 58c0 | 00 73 03 00 00 00 60 20 20 72 2a 00 00 00 72 13 00 00 00 72 13 00 00 00 99 02 00 00 73 7b 00 00 | .s....`..r*...r....r........s{.. |
| 58e0 | 00 f8 80 00 f4 1c 00 09 14 90 41 98 01 91 45 98 3c d3 08 28 80 41 d8 07 08 87 7d 81 7d 84 7f dc | ..........A...E.<..(.A....}.}... |
| 5900 | 0e 1b d0 1c 3a d3 0e 3b d0 08 3b d8 04 05 d7 04 14 d1 04 14 94 58 9c 65 a0 41 9b 68 d3 15 27 d4 | ....:..;..;..........X.e.A.h..'. |
| 5920 | 04 28 d8 04 05 d7 04 14 d1 04 14 94 58 9c 65 a0 41 a0 71 a8 31 a1 75 9b 6f d3 15 2e d4 04 2f d8 | .(..........X.e.A.q.1.u.o...../. |
| 5940 | 04 05 d7 04 14 d1 04 14 d3 14 32 ac 15 a8 71 ab 18 d4 14 32 d4 04 32 d8 0b 0c 80 48 72 32 00 00 | ..........2...q....2..2....Hr2.. |
| 5960 | 00 72 47 00 00 00 63 03 00 00 00 00 00 00 00 00 00 00 00 07 00 00 00 03 00 00 00 f3 28 02 00 00 | .rG...c.....................(... |
| 5980 | 97 00 7c 00 5c 02 00 00 7d 00 7d 03 74 01 00 00 00 00 00 00 00 00 7c 03 ab 01 00 00 00 00 00 00 | ..|.\...}.}.t.........|......... |
| 59a0 | 7d 04 7c 04 64 01 6b 02 00 00 72 0b 74 03 00 00 00 00 00 00 00 00 64 02 ab 01 00 00 00 00 00 00 | }.|.d.k...r.t.........d......... |
| 59c0 | 82 01 7c 01 5c 02 00 00 7d 01 7d 05 74 05 00 00 00 00 00 00 00 00 7c 00 74 06 00 00 00 00 00 00 | ..|.\...}.}.t.........|.t....... |
| 59e0 | 00 00 6a 08 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ab 02 00 00 00 00 00 00 72 32 | ..j...........................r2 |
| 5a00 | 74 05 00 00 00 00 00 00 00 00 7c 01 74 06 00 00 00 00 00 00 00 00 6a 08 00 00 00 00 00 00 00 00 | t.........|.t.........j......... |
| 5a20 | 00 00 00 00 00 00 00 00 00 00 ab 02 00 00 00 00 00 00 72 18 74 0b 00 00 00 00 00 00 00 00 74 0d | ..................r.t.........t. |
| 5a40 | 00 00 00 00 00 00 00 00 7c 04 7c 04 7c 01 7a 00 00 00 ab 02 00 00 00 00 00 00 ab 01 00 00 00 00 | ........|.|.|.z................. |
| 5a60 | 00 00 7d 05 74 01 00 00 00 00 00 00 00 00 7c 05 ab 01 00 00 00 00 00 00 7d 06 74 0f 00 00 00 00 | ..}.t.........|.........}.t..... |
| 5a80 | 00 00 00 00 7c 03 7c 02 ab 02 00 00 00 00 00 00 7d 07 7c 07 6a 11 00 00 00 00 00 00 00 00 00 00 | ....|.|.........}.|.j........... |
| 5aa0 | 00 00 00 00 00 00 00 00 ab 00 00 00 00 00 00 00 72 0b 74 03 00 00 00 00 00 00 00 00 64 03 ab 01 | ................r.t.........d... |
| 5ac0 | 00 00 00 00 00 00 82 01 7c 07 6a 13 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 05 | ........|.j...................|. |
| 5ae0 | ab 01 00 00 00 00 00 00 01 00 7c 06 64 04 6b 44 00 00 72 1a 7c 07 6a 15 00 00 00 00 00 00 00 00 | ..........|.d.kD..r.|.j......... |
| 5b00 | 00 00 00 00 00 00 00 00 00 00 74 17 00 00 00 00 00 00 00 00 7c 05 ab 01 00 00 00 00 00 00 ab 01 | ..........t.........|........... |
| 5b20 | 00 00 00 00 00 00 01 00 74 01 00 00 00 00 00 00 00 00 7c 07 ab 01 00 00 00 00 00 00 7c 04 7c 06 | ........t.........|.........|.|. |
| 5b40 | 7a 00 00 00 6b 37 00 00 72 0b 74 03 00 00 00 00 00 00 00 00 64 05 ab 01 00 00 00 00 00 00 82 01 | z...k7..r.t.........d........... |
| 5b60 | 7c 04 64 06 6b 44 00 00 72 1d 7c 06 64 06 6b 44 00 00 72 18 7c 07 6a 19 00 00 00 00 00 00 00 00 | |.d.kD..r.|.d.kD..r.|.j......... |
| 5b80 | 00 00 00 00 00 00 00 00 00 00 7c 03 64 07 19 00 00 00 7c 05 64 06 19 00 00 00 ab 02 00 00 00 00 | ..........|.d.....|.d........... |
| 5ba0 | 00 00 01 00 7c 07 53 00 29 08 61 a0 04 00 00 52 65 74 75 72 6e 73 20 74 68 65 20 4c 6f 6c 6c 69 | ....|.S.).a....Returns.the.Lolli |
| 5bc0 | 70 6f 70 20 47 72 61 70 68 3b 20 60 60 4b 5f 6d 60 60 20 63 6f 6e 6e 65 63 74 65 64 20 74 6f 20 | pop.Graph;.``K_m``.connected.to. |
| 5be0 | 60 60 50 5f 6e 60 60 2e 0a 0a 20 20 20 20 54 68 69 73 20 69 73 20 74 68 65 20 42 61 72 62 65 6c | ``P_n``.......This.is.the.Barbel |
| 5c00 | 6c 20 47 72 61 70 68 20 77 69 74 68 6f 75 74 20 74 68 65 20 72 69 67 68 74 20 62 61 72 62 65 6c | l.Graph.without.the.right.barbel |
| 5c20 | 6c 2e 0a 0a 20 20 20 20 2e 2e 20 70 6c 6f 74 3a 3a 0a 0a 20 20 20 20 20 20 20 20 3e 3e 3e 20 6e | l..........plot::..........>>>.n |
| 5c40 | 78 2e 64 72 61 77 28 6e 78 2e 6c 6f 6c 6c 69 70 6f 70 5f 67 72 61 70 68 28 33 2c 20 34 29 29 0a | x.draw(nx.lollipop_graph(3,.4)). |
| 5c60 | 0a 20 20 20 20 50 61 72 61 6d 65 74 65 72 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 | .....Parameters.....----------.. |
| 5c80 | 20 20 20 6d 2c 20 6e 20 3a 20 69 6e 74 20 6f 72 20 69 74 65 72 61 62 6c 65 20 63 6f 6e 74 61 69 | ...m,.n.:.int.or.iterable.contai |
| 5ca0 | 6e 65 72 20 6f 66 20 6e 6f 64 65 73 0a 20 20 20 20 20 20 20 20 49 66 20 61 6e 20 69 6e 74 65 67 | ner.of.nodes.........If.an.integ |
| 5cc0 | 65 72 2c 20 6e 6f 64 65 73 20 61 72 65 20 66 72 6f 6d 20 60 60 72 61 6e 67 65 28 6d 29 60 60 20 | er,.nodes.are.from.``range(m)``. |
| 5ce0 | 61 6e 64 20 60 60 72 61 6e 67 65 28 6d 2c 20 6d 2b 6e 29 60 60 2e 0a 20 20 20 20 20 20 20 20 49 | and.``range(m,.m+n)``..........I |
| 5d00 | 66 20 61 20 63 6f 6e 74 61 69 6e 65 72 20 6f 66 20 6e 6f 64 65 73 2c 20 74 68 6f 73 65 20 6e 6f | f.a.container.of.nodes,.those.no |
| 5d20 | 64 65 73 20 61 70 70 65 61 72 20 69 6e 20 74 68 65 20 67 72 61 70 68 2e 0a 20 20 20 20 20 20 20 | des.appear.in.the.graph......... |
| 5d40 | 20 57 61 72 6e 69 6e 67 3a 20 60 6d 60 20 61 6e 64 20 60 6e 60 20 61 72 65 20 6e 6f 74 20 63 68 | .Warning:.`m`.and.`n`.are.not.ch |
| 5d60 | 65 63 6b 65 64 20 66 6f 72 20 64 75 70 6c 69 63 61 74 65 73 20 61 6e 64 20 69 66 20 70 72 65 73 | ecked.for.duplicates.and.if.pres |
| 5d80 | 65 6e 74 20 74 68 65 0a 20 20 20 20 20 20 20 20 72 65 73 75 6c 74 69 6e 67 20 67 72 61 70 68 20 | ent.the.........resulting.graph. |
| 5da0 | 6d 61 79 20 6e 6f 74 20 62 65 20 61 73 20 64 65 73 69 72 65 64 2e 20 4d 61 6b 65 20 73 75 72 65 | may.not.be.as.desired..Make.sure |
| 5dc0 | 20 79 6f 75 20 68 61 76 65 20 6e 6f 20 64 75 70 6c 69 63 61 74 65 73 2e 0a 0a 20 20 20 20 20 20 | .you.have.no.duplicates......... |
| 5de0 | 20 20 54 68 65 20 6e 6f 64 65 73 20 66 6f 72 20 60 6d 60 20 61 70 70 65 61 72 20 69 6e 20 74 68 | ..The.nodes.for.`m`.appear.in.th |
| 5e00 | 65 20 63 6f 6d 70 6c 65 74 65 20 67 72 61 70 68 20 24 4b 5f 6d 24 20 61 6e 64 20 74 68 65 20 6e | e.complete.graph.$K_m$.and.the.n |
| 5e20 | 6f 64 65 73 0a 20 20 20 20 20 20 20 20 66 6f 72 20 60 6e 60 20 61 70 70 65 61 72 20 69 6e 20 74 | odes.........for.`n`.appear.in.t |
| 5e40 | 68 65 20 70 61 74 68 20 24 50 5f 6e 24 0a 20 20 20 20 63 72 65 61 74 65 5f 75 73 69 6e 67 20 3a | he.path.$P_n$.....create_using.: |
| 5e60 | 20 4e 65 74 77 6f 72 6b 58 20 67 72 61 70 68 20 63 6f 6e 73 74 72 75 63 74 6f 72 2c 20 6f 70 74 | .NetworkX.graph.constructor,.opt |
| 5e80 | 69 6f 6e 61 6c 20 28 64 65 66 61 75 6c 74 3d 6e 78 2e 47 72 61 70 68 29 0a 20 20 20 20 20 20 20 | ional.(default=nx.Graph)........ |
| 5ea0 | 47 72 61 70 68 20 74 79 70 65 20 74 6f 20 63 72 65 61 74 65 2e 20 49 66 20 67 72 61 70 68 20 69 | Graph.type.to.create..If.graph.i |
| 5ec0 | 6e 73 74 61 6e 63 65 2c 20 74 68 65 6e 20 63 6c 65 61 72 65 64 20 62 65 66 6f 72 65 20 70 6f 70 | nstance,.then.cleared.before.pop |
| 5ee0 | 75 6c 61 74 65 64 2e 0a 0a 20 20 20 20 52 65 74 75 72 6e 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d | ulated.......Returns.....------- |
| 5f00 | 0a 20 20 20 20 4e 65 74 77 6f 72 6b 78 20 67 72 61 70 68 0a 20 20 20 20 20 20 20 41 20 63 6f 6d | .....Networkx.graph........A.com |
| 5f20 | 70 6c 65 74 65 20 67 72 61 70 68 20 77 69 74 68 20 60 6d 60 20 6e 6f 64 65 73 20 63 6f 6e 6e 65 | plete.graph.with.`m`.nodes.conne |
| 5f40 | 63 74 65 64 20 74 6f 20 61 20 70 61 74 68 20 6f 66 20 6c 65 6e 67 74 68 20 60 6e 60 2e 0a 0a 20 | cted.to.a.path.of.length.`n`.... |
| 5f60 | 20 20 20 4e 6f 74 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 0a 20 20 20 20 54 68 65 20 32 20 73 75 62 | ...Notes.....-----.....The.2.sub |
| 5f80 | 67 72 61 70 68 73 20 61 72 65 20 6a 6f 69 6e 65 64 20 76 69 61 20 61 6e 20 65 64 67 65 20 60 60 | graphs.are.joined.via.an.edge.`` |
| 5fa0 | 28 6d 2d 31 2c 20 6d 29 60 60 2e 0a 20 20 20 20 49 66 20 60 60 6e 3d 30 60 60 2c 20 74 68 69 73 | (m-1,.m)``......If.``n=0``,.this |
| 5fc0 | 20 69 73 20 6d 65 72 65 6c 79 20 61 20 63 6f 6d 70 6c 65 74 65 20 67 72 61 70 68 2e 0a 0a 20 20 | .is.merely.a.complete.graph..... |
| 5fe0 | 20 20 28 54 68 69 73 20 67 72 61 70 68 20 69 73 20 61 6e 20 65 78 74 72 65 6d 61 6c 20 65 78 61 | ..(This.graph.is.an.extremal.exa |
| 6000 | 6d 70 6c 65 20 69 6e 20 44 61 76 69 64 20 41 6c 64 6f 75 73 20 61 6e 64 20 4a 69 6d 0a 20 20 20 | mple.in.David.Aldous.and.Jim.... |
| 6020 | 20 46 69 6c 6c 27 73 20 65 74 65 78 74 20 6f 6e 20 52 61 6e 64 6f 6d 20 57 61 6c 6b 73 20 6f 6e | .Fill's.etext.on.Random.Walks.on |
| 6040 | 20 47 72 61 70 68 73 2e 29 0a 0a 20 20 20 20 72 34 00 00 00 fa 37 49 6e 76 61 6c 69 64 20 64 65 | .Graphs.)......r4....7Invalid.de |
| 6060 | 73 63 72 69 70 74 69 6f 6e 3a 20 6d 20 73 68 6f 75 6c 64 20 69 6e 64 69 63 61 74 65 20 61 74 20 | scription:.m.should.indicate.at. |
| 6080 | 6c 65 61 73 74 20 32 20 6e 6f 64 65 73 72 4a 00 00 00 72 47 00 00 00 7a 2c 4e 6f 64 65 73 20 6d | least.2.nodesrJ...rG...z,Nodes.m |
| 60a0 | 75 73 74 20 62 65 20 64 69 73 74 69 6e 63 74 20 69 6e 20 63 6f 6e 74 61 69 6e 65 72 73 20 6d 20 | ust.be.distinct.in.containers.m. |
| 60c0 | 61 6e 64 20 6e 72 02 00 00 00 e9 ff ff ff ff 29 0d 72 56 00 00 00 72 04 00 00 00 72 69 00 00 00 | and.nr.........).rV...r....ri... |
| 60e0 | da 07 6e 75 6d 62 65 72 73 da 08 49 6e 74 65 67 72 61 6c 72 41 00 00 00 72 1e 00 00 00 72 0a 00 | ..numbers..IntegralrA...r....r.. |
| 6100 | 00 00 72 50 00 00 00 72 44 00 00 00 72 2f 00 00 00 72 06 00 00 00 72 51 00 00 00 29 08 da 01 6d | ..rP...rD...r/...r....rQ...)...m |
| 6120 | 72 23 00 00 00 72 30 00 00 00 da 07 6d 5f 6e 6f 64 65 73 da 01 4d da 07 6e 5f 6e 6f 64 65 73 72 | r#...r0.....m_nodes..M..n_nodesr |
| 6140 | 54 00 00 00 72 31 00 00 00 73 08 00 00 00 20 20 20 20 20 20 20 20 72 2a 00 00 00 72 14 00 00 00 | T...r1...s............r*...r.... |
| 6160 | 72 14 00 00 00 b0 02 00 00 73 01 01 00 00 80 00 f0 4c 01 00 12 13 81 4a 80 41 80 77 dc 08 0b 88 | r........s.......L.....J.A.w.... |
| 6180 | 47 8b 0c 80 41 d8 07 08 88 31 82 75 dc 0e 1b d0 1c 55 d3 0e 56 d0 08 56 e0 11 12 81 4a 80 41 80 | G...A....1.u.....U..V..V....J.A. |
| 61a0 | 77 dc 07 11 90 21 94 57 d7 15 25 d1 15 25 d4 07 26 ac 3a b0 61 bc 17 d7 39 49 d1 39 49 d4 2b 4a | w....!.W..%..%..&.:.a...9I.9I.+J |
| 61c0 | dc 12 16 94 75 98 51 a0 01 a0 41 a1 05 93 7f d3 12 27 88 07 dc 08 0b 88 47 8b 0c 80 41 f4 06 00 | ....u.Q...A......'......G...A... |
| 61e0 | 09 17 90 77 a0 0c d3 08 2d 80 41 d8 07 08 87 7d 81 7d 84 7f dc 0e 1b d0 1c 3a d3 0e 3b d0 08 3b | ...w....-.A....}.}.......:..;..; |
| 6200 | f0 06 00 05 06 d7 04 14 d1 04 14 90 57 d4 04 1d d8 07 08 88 31 82 75 d8 08 09 d7 08 18 d1 08 18 | ............W.......1.u......... |
| 6220 | 9c 18 a0 27 d3 19 2a d4 08 2b e4 07 0a 88 31 83 76 90 11 90 51 91 15 82 7f dc 0e 1b d0 1c 4a d3 | ...'..*..+....1.v...Q.........J. |
| 6240 | 0e 4b d0 08 4b f0 06 00 08 09 88 31 82 75 90 11 90 51 92 15 d8 08 09 8f 0a 89 0a 90 37 98 32 91 | .K..K......1.u...Q..........7.2. |
| 6260 | 3b a0 07 a8 01 a1 0a d4 08 2b d8 0b 0c 80 48 72 32 00 00 00 63 01 00 00 00 00 00 00 00 00 00 00 | ;........+....Hr2...c........... |
| 6280 | 00 04 00 00 00 03 00 00 00 f3 1e 00 00 00 97 00 74 01 00 00 00 00 00 00 00 00 64 01 7c 00 ab 02 | ................t.........d.|... |
| 62a0 | 00 00 00 00 00 00 7d 01 7c 01 53 00 29 02 7a 66 52 65 74 75 72 6e 73 20 74 68 65 20 4e 75 6c 6c | ......}.|.S.).zfReturns.the.Null |
| 62c0 | 20 67 72 61 70 68 20 77 69 74 68 20 6e 6f 20 6e 6f 64 65 73 20 6f 72 20 65 64 67 65 73 2e 0a 0a | .graph.with.no.nodes.or.edges... |
| 62e0 | 20 20 20 20 53 65 65 20 65 6d 70 74 79 5f 67 72 61 70 68 20 66 6f 72 20 74 68 65 20 75 73 65 20 | ....See.empty_graph.for.the.use. |
| 6300 | 6f 66 20 63 72 65 61 74 65 5f 75 73 69 6e 67 2e 0a 0a 20 20 20 20 72 02 00 00 00 a9 01 72 10 00 | of.create_using.......r......r.. |
| 6320 | 00 00 a9 02 72 30 00 00 00 72 31 00 00 00 73 02 00 00 00 20 20 72 2a 00 00 00 72 15 00 00 00 72 | ....r0...r1...s......r*...r....r |
| 6340 | 15 00 00 00 f3 02 00 00 73 15 00 00 00 80 00 f4 0e 00 09 14 90 41 90 7c d3 08 24 80 41 d8 0b 0c | ........s............A.|..$.A... |
| 6360 | 80 48 72 32 00 00 00 63 02 00 00 00 00 00 00 00 00 00 00 00 05 00 00 00 03 00 00 00 f3 5c 00 00 | .Hr2...c.....................\.. |
| 6380 | 00 97 00 7c 00 5c 02 00 00 7d 02 7d 03 74 01 00 00 00 00 00 00 00 00 7c 03 7c 01 ab 02 00 00 00 | ...|.\...}.}.t.........|.|...... |
| 63a0 | 00 00 00 7d 04 7c 04 6a 03 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 74 05 00 00 00 | ...}.|.j...................t.... |
| 63c0 | 00 00 00 00 00 7c 03 ab 01 00 00 00 00 00 00 ab 01 00 00 00 00 00 00 01 00 7c 04 53 00 29 01 61 | .....|...................|.S.).a |
| 63e0 | 4f 02 00 00 52 65 74 75 72 6e 73 20 74 68 65 20 50 61 74 68 20 67 72 61 70 68 20 60 50 5f 6e 60 | O...Returns.the.Path.graph.`P_n` |
| 6400 | 20 6f 66 20 6c 69 6e 65 61 72 6c 79 20 63 6f 6e 6e 65 63 74 65 64 20 6e 6f 64 65 73 2e 0a 0a 20 | .of.linearly.connected.nodes.... |
| 6420 | 20 20 20 2e 2e 20 70 6c 6f 74 3a 3a 0a 0a 20 20 20 20 20 20 20 20 3e 3e 3e 20 6e 78 2e 64 72 61 | ......plot::..........>>>.nx.dra |
| 6440 | 77 28 6e 78 2e 70 61 74 68 5f 67 72 61 70 68 28 35 29 29 0a 0a 20 20 20 20 50 61 72 61 6d 65 74 | w(nx.path_graph(5))......Paramet |
| 6460 | 65 72 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 6e 20 3a 20 69 6e 74 20 6f | ers.....----------.....n.:.int.o |
| 6480 | 72 20 69 74 65 72 61 62 6c 65 0a 20 20 20 20 20 20 20 20 49 66 20 61 6e 20 69 6e 74 65 67 65 72 | r.iterable.........If.an.integer |
| 64a0 | 2c 20 6e 6f 64 65 73 20 61 72 65 20 30 20 74 6f 20 6e 20 2d 20 31 2e 0a 20 20 20 20 20 20 20 20 | ,.nodes.are.0.to.n.-.1.......... |
| 64c0 | 49 66 20 61 6e 20 69 74 65 72 61 62 6c 65 20 6f 66 20 6e 6f 64 65 73 2c 20 69 6e 20 74 68 65 20 | If.an.iterable.of.nodes,.in.the. |
| 64e0 | 6f 72 64 65 72 20 74 68 65 79 20 61 70 70 65 61 72 20 69 6e 20 74 68 65 20 70 61 74 68 2e 0a 20 | order.they.appear.in.the.path... |
| 6500 | 20 20 20 20 20 20 20 57 61 72 6e 69 6e 67 3a 20 6e 20 69 73 20 6e 6f 74 20 63 68 65 63 6b 65 64 | .......Warning:.n.is.not.checked |
| 6520 | 20 66 6f 72 20 64 75 70 6c 69 63 61 74 65 73 20 61 6e 64 20 69 66 20 70 72 65 73 65 6e 74 20 74 | .for.duplicates.and.if.present.t |
| 6540 | 68 65 0a 20 20 20 20 20 20 20 20 72 65 73 75 6c 74 69 6e 67 20 67 72 61 70 68 20 6d 61 79 20 6e | he.........resulting.graph.may.n |
| 6560 | 6f 74 20 62 65 20 61 73 20 64 65 73 69 72 65 64 2e 20 4d 61 6b 65 20 73 75 72 65 20 79 6f 75 20 | ot.be.as.desired..Make.sure.you. |
| 6580 | 68 61 76 65 20 6e 6f 20 64 75 70 6c 69 63 61 74 65 73 2e 0a 20 20 20 20 63 72 65 61 74 65 5f 75 | have.no.duplicates......create_u |
| 65a0 | 73 69 6e 67 20 3a 20 4e 65 74 77 6f 72 6b 58 20 67 72 61 70 68 20 63 6f 6e 73 74 72 75 63 74 6f | sing.:.NetworkX.graph.constructo |
| 65c0 | 72 2c 20 6f 70 74 69 6f 6e 61 6c 20 28 64 65 66 61 75 6c 74 3d 6e 78 2e 47 72 61 70 68 29 0a 20 | r,.optional.(default=nx.Graph).. |
| 65e0 | 20 20 20 20 20 20 47 72 61 70 68 20 74 79 70 65 20 74 6f 20 63 72 65 61 74 65 2e 20 49 66 20 67 | ......Graph.type.to.create..If.g |
| 6600 | 72 61 70 68 20 69 6e 73 74 61 6e 63 65 2c 20 74 68 65 6e 20 63 6c 65 61 72 65 64 20 62 65 66 6f | raph.instance,.then.cleared.befo |
| 6620 | 72 65 20 70 6f 70 75 6c 61 74 65 64 2e 0a 0a 20 20 20 20 72 61 00 00 00 72 62 00 00 00 73 05 00 | re.populated.......ra...rb...s.. |
| 6640 | 00 00 20 20 20 20 20 72 2a 00 00 00 72 16 00 00 00 72 16 00 00 00 fe 02 00 00 73 30 00 00 00 80 | .......r*...r....r........s0.... |
| 6660 | 00 f0 28 00 10 11 81 48 80 41 80 75 dc 08 13 90 45 98 3c d3 08 28 80 41 d8 04 05 d7 04 14 d1 04 | ..(....H.A.u....E.<..(.A........ |
| 6680 | 14 94 58 98 65 93 5f d4 04 25 d8 0b 0c 80 48 72 32 00 00 00 63 02 00 00 00 00 00 00 00 00 00 00 | ..X.e._..%....Hr2...c........... |
| 66a0 | 00 05 00 00 00 03 00 00 00 f3 20 01 00 00 87 05 97 00 7c 00 5c 02 00 00 7d 00 7d 02 74 01 00 00 | ..................|.\...}.}.t... |
| 66c0 | 00 00 00 00 00 00 7c 00 74 02 00 00 00 00 00 00 00 00 6a 04 00 00 00 00 00 00 00 00 00 00 00 00 | ......|.t.........j............. |
| 66e0 | 00 00 00 00 00 00 ab 02 00 00 00 00 00 00 72 1a 7c 02 6a 07 00 00 00 00 00 00 00 00 00 00 00 00 | ..............r.|.j............. |
| 6700 | 00 00 00 00 00 00 74 09 00 00 00 00 00 00 00 00 7c 00 ab 01 00 00 00 00 00 00 ab 01 00 00 00 00 | ......t.........|............... |
| 6720 | 00 00 01 00 74 0b 00 00 00 00 00 00 00 00 7c 02 7c 01 ab 02 00 00 00 00 00 00 7d 03 7c 03 6a 0d | ....t.........|.|.........}.|.j. |
| 6740 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ab 00 00 00 00 00 00 00 72 0b 74 0f 00 00 | ..........................r.t... |
| 6760 | 00 00 00 00 00 00 64 01 ab 01 00 00 00 00 00 00 82 01 74 11 00 00 00 00 00 00 00 00 7c 02 ab 01 | ......d...........t.........|... |
| 6780 | 00 00 00 00 00 00 64 02 6b 44 00 00 72 1e 7c 02 5e 01 8a 05 7d 04 7c 03 6a 13 00 00 00 00 00 00 | ......d.kD..r.|.^...}.|.j....... |
| 67a0 | 00 00 00 00 00 00 00 00 00 00 00 00 88 05 66 01 64 03 84 08 7c 04 44 00 ab 00 00 00 00 00 00 00 | ..............f.d...|.D......... |
| 67c0 | ab 01 00 00 00 00 00 00 01 00 7c 03 53 00 29 04 61 f3 02 00 00 52 65 74 75 72 6e 20 74 68 65 20 | ..........|.S.).a....Return.the. |
| 67e0 | 73 74 61 72 20 67 72 61 70 68 0a 0a 20 20 20 20 54 68 65 20 73 74 61 72 20 67 72 61 70 68 20 63 | star.graph......The.star.graph.c |
| 6800 | 6f 6e 73 69 73 74 73 20 6f 66 20 6f 6e 65 20 63 65 6e 74 65 72 20 6e 6f 64 65 20 63 6f 6e 6e 65 | onsists.of.one.center.node.conne |
| 6820 | 63 74 65 64 20 74 6f 20 6e 20 6f 75 74 65 72 20 6e 6f 64 65 73 2e 0a 0a 20 20 20 20 2e 2e 20 70 | cted.to.n.outer.nodes..........p |
| 6840 | 6c 6f 74 3a 3a 0a 0a 20 20 20 20 20 20 20 20 3e 3e 3e 20 6e 78 2e 64 72 61 77 28 6e 78 2e 73 74 | lot::..........>>>.nx.draw(nx.st |
| 6860 | 61 72 5f 67 72 61 70 68 28 36 29 29 0a 0a 20 20 20 20 50 61 72 61 6d 65 74 65 72 73 0a 20 20 20 | ar_graph(6))......Parameters.... |
| 6880 | 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 6e 20 3a 20 69 6e 74 20 6f 72 20 69 74 65 72 61 | .----------.....n.:.int.or.itera |
| 68a0 | 62 6c 65 0a 20 20 20 20 20 20 20 20 49 66 20 61 6e 20 69 6e 74 65 67 65 72 2c 20 6e 6f 64 65 20 | ble.........If.an.integer,.node. |
| 68c0 | 6c 61 62 65 6c 73 20 61 72 65 20 30 20 74 6f 20 6e 20 77 69 74 68 20 63 65 6e 74 65 72 20 30 2e | labels.are.0.to.n.with.center.0. |
| 68e0 | 0a 20 20 20 20 20 20 20 20 49 66 20 61 6e 20 69 74 65 72 61 62 6c 65 20 6f 66 20 6e 6f 64 65 73 | .........If.an.iterable.of.nodes |
| 6900 | 2c 20 74 68 65 20 63 65 6e 74 65 72 20 69 73 20 74 68 65 20 66 69 72 73 74 2e 0a 20 20 20 20 20 | ,.the.center.is.the.first....... |
| 6920 | 20 20 20 57 61 72 6e 69 6e 67 3a 20 6e 20 69 73 20 6e 6f 74 20 63 68 65 63 6b 65 64 20 66 6f 72 | ...Warning:.n.is.not.checked.for |
| 6940 | 20 64 75 70 6c 69 63 61 74 65 73 20 61 6e 64 20 69 66 20 70 72 65 73 65 6e 74 20 74 68 65 0a 20 | .duplicates.and.if.present.the.. |
| 6960 | 20 20 20 20 20 20 20 72 65 73 75 6c 74 69 6e 67 20 67 72 61 70 68 20 6d 61 79 20 6e 6f 74 20 62 | .......resulting.graph.may.not.b |
| 6980 | 65 20 61 73 20 64 65 73 69 72 65 64 2e 20 4d 61 6b 65 20 73 75 72 65 20 79 6f 75 20 68 61 76 65 | e.as.desired..Make.sure.you.have |
| 69a0 | 20 6e 6f 20 64 75 70 6c 69 63 61 74 65 73 2e 0a 20 20 20 20 63 72 65 61 74 65 5f 75 73 69 6e 67 | .no.duplicates......create_using |
| 69c0 | 20 3a 20 4e 65 74 77 6f 72 6b 58 20 67 72 61 70 68 20 63 6f 6e 73 74 72 75 63 74 6f 72 2c 20 6f | .:.NetworkX.graph.constructor,.o |
| 69e0 | 70 74 69 6f 6e 61 6c 20 28 64 65 66 61 75 6c 74 3d 6e 78 2e 47 72 61 70 68 29 0a 20 20 20 20 20 | ptional.(default=nx.Graph)...... |
| 6a00 | 20 20 47 72 61 70 68 20 74 79 70 65 20 74 6f 20 63 72 65 61 74 65 2e 20 49 66 20 67 72 61 70 68 | ..Graph.type.to.create..If.graph |
| 6a20 | 20 69 6e 73 74 61 6e 63 65 2c 20 74 68 65 6e 20 63 6c 65 61 72 65 64 20 62 65 66 6f 72 65 20 70 | .instance,.then.cleared.before.p |
| 6a40 | 6f 70 75 6c 61 74 65 64 2e 0a 0a 20 20 20 20 4e 6f 74 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 0a 20 | opulated.......Notes.....-----.. |
| 6a60 | 20 20 20 54 68 65 20 67 72 61 70 68 20 68 61 73 20 6e 2b 31 20 6e 6f 64 65 73 20 66 6f 72 20 69 | ...The.graph.has.n+1.nodes.for.i |
| 6a80 | 6e 74 65 67 65 72 20 6e 2e 0a 20 20 20 20 53 6f 20 73 74 61 72 5f 67 72 61 70 68 28 33 29 20 69 | nteger.n......So.star_graph(3).i |
| 6aa0 | 73 20 74 68 65 20 73 61 6d 65 20 61 73 20 73 74 61 72 5f 67 72 61 70 68 28 72 61 6e 67 65 28 34 | s.the.same.as.star_graph(range(4 |
| 6ac0 | 29 29 2e 0a 20 20 20 20 72 4a 00 00 00 72 47 00 00 00 63 01 00 00 00 00 00 00 00 00 00 00 00 03 | ))......rJ...rG...c............. |
| 6ae0 | 00 00 00 33 00 00 00 f3 26 00 00 00 95 01 4b 00 01 00 97 00 7c 00 5d 08 00 00 7d 01 89 02 7c 01 | ...3....&.....K.....|.]...}...|. |
| 6b00 | 66 02 96 01 97 01 01 00 8c 0a 04 00 79 00 ad 03 77 01 72 36 00 00 00 72 71 00 00 00 a9 03 72 38 | f...........y...w.r6...rq.....r8 |
| 6b20 | 00 00 00 da 04 6e 6f 64 65 da 03 68 75 62 73 03 00 00 00 20 20 80 72 2a 00 00 00 72 3e 00 00 00 | .....node..hubs.......r*...r>... |
| 6b40 | 7a 1d 73 74 61 72 5f 67 72 61 70 68 2e 3c 6c 6f 63 61 6c 73 3e 2e 3c 67 65 6e 65 78 70 72 3e 3b | z.star_graph.<locals>.<genexpr>; |
| 6b60 | 03 00 00 73 15 00 00 00 f8 e8 00 f8 80 00 d2 18 38 a8 14 98 23 98 74 9c 1b d1 18 38 f9 f3 04 00 | ...s............8...#.t....8.... |
| 6b80 | 00 00 83 0e 11 01 29 0a 72 69 00 00 00 72 75 00 00 00 72 76 00 00 00 72 21 00 00 00 da 03 69 6e | ......).ri...ru...rv...r!.....in |
| 6ba0 | 74 72 10 00 00 00 72 50 00 00 00 72 04 00 00 00 72 56 00 00 00 72 2f 00 00 00 29 06 72 23 00 00 | tr....rP...r....rV...r/...).r#.. |
| 6bc0 | 00 72 30 00 00 00 72 25 00 00 00 72 31 00 00 00 da 06 73 70 6f 6b 65 73 72 83 00 00 00 73 06 00 | .r0...r%...r1.....spokesr....s.. |
| 6be0 | 00 00 20 20 20 20 20 40 72 2a 00 00 00 72 17 00 00 00 72 17 00 00 00 18 03 00 00 73 7c 00 00 00 | .......@r*...r....r........s|... |
| 6c00 | f8 80 00 f0 34 00 10 11 81 48 80 41 80 75 dc 07 11 90 21 94 57 d7 15 25 d1 15 25 d4 07 26 d8 08 | ....4....H.A.u....!.W..%..%..&.. |
| 6c20 | 0d 8f 0c 89 0c 94 53 98 11 93 56 d4 08 1c dc 08 13 90 45 98 3c d3 08 28 80 41 d8 07 08 87 7d 81 | ......S...V.......E.<..(.A....}. |
| 6c40 | 7d 84 7f dc 0e 1b d0 1c 3a d3 0e 3b d0 08 3b e4 07 0a 88 35 83 7a 90 41 82 7e d8 17 1c 88 0c 88 | }.......:..;..;....5.z.A.~...... |
| 6c60 | 03 88 66 d8 08 09 d7 08 18 d1 08 18 d3 18 38 b0 16 d4 18 38 d4 08 38 d8 0b 0c 80 48 72 32 00 00 | ..f...........8....8..8....Hr2.. |
| 6c80 | 00 63 03 00 00 00 00 00 00 00 00 00 00 00 07 00 00 00 03 00 00 00 f3 82 01 00 00 97 00 7c 00 5c | .c...........................|.\ |
| 6ca0 | 02 00 00 7d 00 7d 03 74 01 00 00 00 00 00 00 00 00 7c 03 ab 01 00 00 00 00 00 00 7d 04 7c 04 64 | ...}.}.t.........|.........}.|.d |
| 6cc0 | 01 6b 02 00 00 72 0b 74 03 00 00 00 00 00 00 00 00 64 02 ab 01 00 00 00 00 00 00 82 01 7c 01 5c | .k...r.t.........d...........|.\ |
| 6ce0 | 02 00 00 7d 01 7d 05 74 05 00 00 00 00 00 00 00 00 7c 00 74 06 00 00 00 00 00 00 00 00 6a 08 00 | ...}.}.t.........|.t.........j.. |
| 6d00 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ab 02 00 00 00 00 00 00 72 32 74 05 00 00 00 | .........................r2t.... |
| 6d20 | 00 00 00 00 00 7c 01 74 06 00 00 00 00 00 00 00 00 6a 08 00 00 00 00 00 00 00 00 00 00 00 00 00 | .....|.t.........j.............. |
| 6d40 | 00 00 00 00 00 ab 02 00 00 00 00 00 00 72 18 74 0b 00 00 00 00 00 00 00 00 74 0d 00 00 00 00 00 | .............r.t.........t...... |
| 6d60 | 00 00 00 7c 04 7c 04 7c 01 7a 00 00 00 ab 02 00 00 00 00 00 00 ab 01 00 00 00 00 00 00 7d 05 74 | ...|.|.|.z...................}.t |
| 6d80 | 0f 00 00 00 00 00 00 00 00 7c 03 7c 02 ab 02 00 00 00 00 00 00 7d 06 7c 06 6a 11 00 00 00 00 00 | .........|.|.........}.|.j...... |
| 6da0 | 00 00 00 00 00 00 00 00 00 00 00 00 00 ab 00 00 00 00 00 00 00 72 0b 74 03 00 00 00 00 00 00 00 | .....................r.t........ |
| 6dc0 | 00 64 03 ab 01 00 00 00 00 00 00 82 01 74 13 00 00 00 00 00 00 00 00 6a 14 00 00 00 00 00 00 00 | .d...........t.........j........ |
| 6de0 | 00 00 00 00 00 00 00 00 00 00 00 7c 06 7c 03 64 04 19 00 00 00 67 01 74 0b 00 00 00 00 00 00 00 | ...........|.|.d.....g.t........ |
| 6e00 | 00 7c 05 ab 01 00 00 00 00 00 00 7a 00 00 00 ab 02 00 00 00 00 00 00 01 00 7c 06 53 00 29 05 61 | .|.........z.............|.S.).a |
| 6e20 | 15 05 00 00 52 65 74 75 72 6e 73 20 74 68 65 20 28 6d 2c 6e 29 2d 74 61 64 70 6f 6c 65 20 67 72 | ....Returns.the.(m,n)-tadpole.gr |
| 6e40 | 61 70 68 3b 20 60 60 43 5f 6d 60 60 20 63 6f 6e 6e 65 63 74 65 64 20 74 6f 20 60 60 50 5f 6e 60 | aph;.``C_m``.connected.to.``P_n` |
| 6e60 | 60 2e 0a 0a 20 20 20 20 54 68 69 73 20 67 72 61 70 68 20 6f 6e 20 6d 2b 6e 20 6e 6f 64 65 73 20 | `.......This.graph.on.m+n.nodes. |
| 6e80 | 63 6f 6e 6e 65 63 74 73 20 61 20 63 79 63 6c 65 20 6f 66 20 73 69 7a 65 20 60 6d 60 20 74 6f 20 | connects.a.cycle.of.size.`m`.to. |
| 6ea0 | 61 20 70 61 74 68 20 6f 66 20 6c 65 6e 67 74 68 20 60 6e 60 2e 0a 20 20 20 20 49 74 20 6c 6f 6f | a.path.of.length.`n`......It.loo |
| 6ec0 | 6b 73 20 6c 69 6b 65 20 61 20 74 61 64 70 6f 6c 65 2e 20 49 74 20 69 73 20 61 6c 73 6f 20 63 61 | ks.like.a.tadpole..It.is.also.ca |
| 6ee0 | 6c 6c 65 64 20 61 20 6b 69 74 65 20 67 72 61 70 68 20 6f 72 20 61 20 64 72 61 67 6f 6e 20 67 72 | lled.a.kite.graph.or.a.dragon.gr |
| 6f00 | 61 70 68 2e 0a 0a 20 20 20 20 2e 2e 20 70 6c 6f 74 3a 3a 0a 0a 20 20 20 20 20 20 20 20 3e 3e 3e | aph..........plot::..........>>> |
| 6f20 | 20 6e 78 2e 64 72 61 77 28 6e 78 2e 74 61 64 70 6f 6c 65 5f 67 72 61 70 68 28 33 2c 20 35 29 29 | .nx.draw(nx.tadpole_graph(3,.5)) |
| 6f40 | 0a 0a 20 20 20 20 50 61 72 61 6d 65 74 65 72 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a | ......Parameters.....----------. |
| 6f60 | 20 20 20 20 6d 2c 20 6e 20 3a 20 69 6e 74 20 6f 72 20 69 74 65 72 61 62 6c 65 20 63 6f 6e 74 61 | ....m,.n.:.int.or.iterable.conta |
| 6f80 | 69 6e 65 72 20 6f 66 20 6e 6f 64 65 73 0a 20 20 20 20 20 20 20 20 49 66 20 61 6e 20 69 6e 74 65 | iner.of.nodes.........If.an.inte |
| 6fa0 | 67 65 72 2c 20 6e 6f 64 65 73 20 61 72 65 20 66 72 6f 6d 20 60 60 72 61 6e 67 65 28 6d 29 60 60 | ger,.nodes.are.from.``range(m)`` |
| 6fc0 | 20 61 6e 64 20 60 60 72 61 6e 67 65 28 6d 2c 6d 2b 6e 29 60 60 2e 0a 20 20 20 20 20 20 20 20 49 | .and.``range(m,m+n)``..........I |
| 6fe0 | 66 20 61 20 63 6f 6e 74 61 69 6e 65 72 20 6f 66 20 6e 6f 64 65 73 2c 20 74 68 6f 73 65 20 6e 6f | f.a.container.of.nodes,.those.no |
| 7000 | 64 65 73 20 61 70 70 65 61 72 20 69 6e 20 74 68 65 20 67 72 61 70 68 2e 0a 20 20 20 20 20 20 20 | des.appear.in.the.graph......... |
| 7020 | 20 57 61 72 6e 69 6e 67 3a 20 60 6d 60 20 61 6e 64 20 60 6e 60 20 61 72 65 20 6e 6f 74 20 63 68 | .Warning:.`m`.and.`n`.are.not.ch |
| 7040 | 65 63 6b 65 64 20 66 6f 72 20 64 75 70 6c 69 63 61 74 65 73 20 61 6e 64 20 69 66 20 70 72 65 73 | ecked.for.duplicates.and.if.pres |
| 7060 | 65 6e 74 20 74 68 65 0a 20 20 20 20 20 20 20 20 72 65 73 75 6c 74 69 6e 67 20 67 72 61 70 68 20 | ent.the.........resulting.graph. |
| 7080 | 6d 61 79 20 6e 6f 74 20 62 65 20 61 73 20 64 65 73 69 72 65 64 2e 0a 0a 20 20 20 20 20 20 20 20 | may.not.be.as.desired........... |
| 70a0 | 54 68 65 20 6e 6f 64 65 73 20 66 6f 72 20 60 6d 60 20 61 70 70 65 61 72 20 69 6e 20 74 68 65 20 | The.nodes.for.`m`.appear.in.the. |
| 70c0 | 63 79 63 6c 65 20 67 72 61 70 68 20 24 43 5f 6d 24 20 61 6e 64 20 74 68 65 20 6e 6f 64 65 73 0a | cycle.graph.$C_m$.and.the.nodes. |
| 70e0 | 20 20 20 20 20 20 20 20 66 6f 72 20 60 6e 60 20 61 70 70 65 61 72 20 69 6e 20 74 68 65 20 70 61 | ........for.`n`.appear.in.the.pa |
| 7100 | 74 68 20 24 50 5f 6e 24 2e 0a 20 20 20 20 63 72 65 61 74 65 5f 75 73 69 6e 67 20 3a 20 4e 65 74 | th.$P_n$......create_using.:.Net |
| 7120 | 77 6f 72 6b 58 20 67 72 61 70 68 20 63 6f 6e 73 74 72 75 63 74 6f 72 2c 20 6f 70 74 69 6f 6e 61 | workX.graph.constructor,.optiona |
| 7140 | 6c 20 28 64 65 66 61 75 6c 74 3d 6e 78 2e 47 72 61 70 68 29 0a 20 20 20 20 20 20 20 47 72 61 70 | l.(default=nx.Graph)........Grap |
| 7160 | 68 20 74 79 70 65 20 74 6f 20 63 72 65 61 74 65 2e 20 49 66 20 67 72 61 70 68 20 69 6e 73 74 61 | h.type.to.create..If.graph.insta |
| 7180 | 6e 63 65 2c 20 74 68 65 6e 20 63 6c 65 61 72 65 64 20 62 65 66 6f 72 65 20 70 6f 70 75 6c 61 74 | nce,.then.cleared.before.populat |
| 71a0 | 65 64 2e 0a 0a 20 20 20 20 52 65 74 75 72 6e 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 | ed.......Returns.....-------.... |
| 71c0 | 20 4e 65 74 77 6f 72 6b 78 20 67 72 61 70 68 0a 20 20 20 20 20 20 20 41 20 63 79 63 6c 65 20 6f | .Networkx.graph........A.cycle.o |
| 71e0 | 66 20 73 69 7a 65 20 60 6d 60 20 63 6f 6e 6e 65 63 74 65 64 20 74 6f 20 61 20 70 61 74 68 20 6f | f.size.`m`.connected.to.a.path.o |
| 7200 | 66 20 6c 65 6e 67 74 68 20 60 6e 60 2e 0a 0a 20 20 20 20 52 61 69 73 65 73 0a 20 20 20 20 2d 2d | f.length.`n`.......Raises.....-- |
| 7220 | 2d 2d 2d 2d 0a 20 20 20 20 4e 65 74 77 6f 72 6b 58 45 72 72 6f 72 0a 20 20 20 20 20 20 20 20 49 | ----.....NetworkXError.........I |
| 7240 | 66 20 60 60 6d 20 3c 20 32 60 60 2e 20 54 68 65 20 74 61 64 70 6f 6c 65 20 67 72 61 70 68 20 69 | f.``m.<.2``..The.tadpole.graph.i |
| 7260 | 73 20 75 6e 64 65 66 69 6e 65 64 20 66 6f 72 20 60 60 6d 3c 32 60 60 2e 0a 0a 20 20 20 20 4e 6f | s.undefined.for.``m<2``.......No |
| 7280 | 74 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 0a 20 20 20 20 54 68 65 20 32 20 73 75 62 67 72 61 70 68 | tes.....-----.....The.2.subgraph |
| 72a0 | 73 20 61 72 65 20 6a 6f 69 6e 65 64 20 76 69 61 20 61 6e 20 65 64 67 65 20 60 60 28 6d 2d 31 2c | s.are.joined.via.an.edge.``(m-1, |
| 72c0 | 20 6d 29 60 60 2e 0a 20 20 20 20 49 66 20 60 60 6e 3d 30 60 60 2c 20 74 68 69 73 20 69 73 20 61 | .m)``......If.``n=0``,.this.is.a |
| 72e0 | 20 63 79 63 6c 65 20 67 72 61 70 68 2e 0a 20 20 20 20 60 6d 60 20 61 6e 64 2f 6f 72 20 60 6e 60 | .cycle.graph......`m`.and/or.`n` |
| 7300 | 20 63 61 6e 20 62 65 20 61 20 63 6f 6e 74 61 69 6e 65 72 20 6f 66 20 6e 6f 64 65 73 20 69 6e 73 | .can.be.a.container.of.nodes.ins |
| 7320 | 74 65 61 64 20 6f 66 20 61 6e 20 69 6e 74 65 67 65 72 2e 0a 0a 20 20 20 20 72 34 00 00 00 72 73 | tead.of.an.integer.......r4...rs |
| 7340 | 00 00 00 72 4a 00 00 00 72 74 00 00 00 29 0b 72 56 00 00 00 72 04 00 00 00 72 69 00 00 00 72 75 | ...rJ...rt...).rV...r....ri...ru |
| 7360 | 00 00 00 72 76 00 00 00 72 41 00 00 00 72 1e 00 00 00 72 0e 00 00 00 72 50 00 00 00 72 40 00 00 | ...rv...rA...r....r....rP...r@.. |
| 7380 | 00 da 08 61 64 64 5f 70 61 74 68 29 07 72 77 00 00 00 72 23 00 00 00 72 30 00 00 00 72 78 00 00 | ...add_path).rw...r#...r0...rx.. |
| 73a0 | 00 72 79 00 00 00 72 7a 00 00 00 72 31 00 00 00 73 07 00 00 00 20 20 20 20 20 20 20 72 2a 00 00 | .ry...rz...r1...s...........r*.. |
| 73c0 | 00 72 18 00 00 00 72 18 00 00 00 3f 03 00 00 73 ad 00 00 00 80 00 f0 54 01 00 12 13 81 4a 80 41 | .r....r....?...s.......T.....J.A |
| 73e0 | 80 77 dc 08 0b 88 47 8b 0c 80 41 d8 07 08 88 31 82 75 dc 0e 1b d0 1c 55 d3 0e 56 d0 08 56 e0 11 | .w....G...A....1.u.....U..V..V.. |
| 7400 | 12 81 4a 80 41 80 77 dc 07 11 90 21 94 57 d7 15 25 d1 15 25 d4 07 26 ac 3a b0 61 bc 17 d7 39 49 | ..J.A.w....!.W..%..%..&.:.a...9I |
| 7420 | d1 39 49 d4 2b 4a dc 12 16 94 75 98 51 a0 01 a0 41 a1 05 93 7f d3 12 27 88 07 f4 06 00 09 14 90 | .9I.+J....u.Q...A......'........ |
| 7440 | 47 98 5c d3 08 2a 80 41 d8 07 08 87 7d 81 7d 84 7f dc 0e 1b d0 1c 3a d3 0e 3b d0 08 3b f4 06 00 | G.\..*.A....}.}.......:..;..;... |
| 7460 | 05 07 87 4b 81 4b 90 01 90 47 98 42 91 4b 90 3d a4 34 a8 07 a3 3d d1 13 30 d4 04 31 e0 0b 0c 80 | ...K.K...G.B.K.=.4...=..0..1.... |
| 7480 | 48 72 32 00 00 00 63 01 00 00 00 00 00 00 00 00 00 00 00 04 00 00 00 03 00 00 00 f3 1e 00 00 00 | Hr2...c......................... |
| 74a0 | 97 00 74 01 00 00 00 00 00 00 00 00 64 01 7c 00 ab 02 00 00 00 00 00 00 7d 01 7c 01 53 00 29 02 | ..t.........d.|.........}.|.S.). |
| 74c0 | 7a 93 52 65 74 75 72 6e 20 74 68 65 20 54 72 69 76 69 61 6c 20 67 72 61 70 68 20 77 69 74 68 20 | z.Return.the.Trivial.graph.with. |
| 74e0 | 6f 6e 65 20 6e 6f 64 65 20 28 77 69 74 68 20 6c 61 62 65 6c 20 30 29 20 61 6e 64 20 6e 6f 20 65 | one.node.(with.label.0).and.no.e |
| 7500 | 64 67 65 73 2e 0a 0a 20 20 20 20 2e 2e 20 70 6c 6f 74 3a 3a 0a 0a 20 20 20 20 20 20 20 20 3e 3e | dges..........plot::..........>> |
| 7520 | 3e 20 6e 78 2e 64 72 61 77 28 6e 78 2e 74 72 69 76 69 61 6c 5f 67 72 61 70 68 28 29 2c 20 77 69 | >.nx.draw(nx.trivial_graph(),.wi |
| 7540 | 74 68 5f 6c 61 62 65 6c 73 3d 54 72 75 65 29 0a 0a 20 20 20 20 72 47 00 00 00 72 7c 00 00 00 72 | th_labels=True)......rG...r|...r |
| 7560 | 7d 00 00 00 73 02 00 00 00 20 20 72 2a 00 00 00 72 19 00 00 00 72 19 00 00 00 7d 03 00 00 73 15 | }...s......r*...r....r....}...s. |
| 7580 | 00 00 00 80 00 f4 12 00 09 14 90 41 90 7c d3 08 24 80 41 d8 0b 0c 80 48 72 32 00 00 00 63 02 00 | ...........A.|..$.A....Hr2...c.. |
| 75a0 | 00 00 00 00 00 00 00 00 00 00 04 00 00 00 03 00 00 00 f3 98 00 00 00 97 00 64 01 7c 01 63 02 78 | .........................d.|.c.x |
| 75c0 | 02 6b 1a 00 00 72 0f 7c 00 6b 1a 00 00 73 17 74 01 00 00 00 00 00 00 00 00 64 02 ab 01 00 00 00 | .k...r.|.k...s.t.........d...... |
| 75e0 | 00 00 00 82 01 01 00 74 01 00 00 00 00 00 00 00 00 64 02 ab 01 00 00 00 00 00 00 82 01 7c 00 7c | .......t.........d...........|.| |
| 7600 | 01 7a 02 00 00 67 01 7c 01 7c 00 7c 01 7a 06 00 00 7a 0a 00 00 7a 05 00 00 7c 00 7c 01 7a 02 00 | .z...g.|.|.|.z...z...z...|.|.z.. |
| 7620 | 00 64 01 7a 00 00 00 67 01 7c 00 7c 01 7a 06 00 00 7a 05 00 00 7a 00 00 00 7d 02 74 03 00 00 00 | .d.z...g.|.|.z...z...z...}.t.... |
| 7640 | 00 00 00 00 00 7c 02 8e 00 7d 03 7c 03 53 00 29 03 61 c7 02 00 00 52 65 74 75 72 6e 20 74 68 65 | .....|...}.|.S.).a....Return.the |
| 7660 | 20 54 75 72 61 6e 20 47 72 61 70 68 0a 0a 20 20 20 20 54 68 65 20 54 75 72 61 6e 20 47 72 61 70 | .Turan.Graph......The.Turan.Grap |
| 7680 | 68 20 69 73 20 61 20 63 6f 6d 70 6c 65 74 65 20 6d 75 6c 74 69 70 61 72 74 69 74 65 20 67 72 61 | h.is.a.complete.multipartite.gra |
| 76a0 | 70 68 20 6f 6e 20 24 6e 24 20 6e 6f 64 65 73 0a 20 20 20 20 77 69 74 68 20 24 72 24 20 64 69 73 | ph.on.$n$.nodes.....with.$r$.dis |
| 76c0 | 6a 6f 69 6e 74 20 73 75 62 73 65 74 73 2e 20 54 68 61 74 20 69 73 2c 20 65 64 67 65 73 20 63 6f | joint.subsets..That.is,.edges.co |
| 76e0 | 6e 6e 65 63 74 20 65 61 63 68 20 6e 6f 64 65 20 74 6f 0a 20 20 20 20 65 76 65 72 79 20 6e 6f 64 | nnect.each.node.to.....every.nod |
| 7700 | 65 20 6e 6f 74 20 69 6e 20 69 74 73 20 73 75 62 73 65 74 2e 0a 0a 20 20 20 20 47 69 76 65 6e 20 | e.not.in.its.subset.......Given. |
| 7720 | 24 6e 24 20 61 6e 64 20 24 72 24 2c 20 77 65 20 63 72 65 61 74 65 20 61 20 63 6f 6d 70 6c 65 74 | $n$.and.$r$,.we.create.a.complet |
| 7740 | 65 20 6d 75 6c 74 69 70 61 72 74 69 74 65 20 67 72 61 70 68 20 77 69 74 68 0a 20 20 20 20 24 72 | e.multipartite.graph.with.....$r |
| 7760 | 2d 28 6e 20 5c 6d 6f 64 20 72 29 24 20 70 61 72 74 69 74 69 6f 6e 73 20 6f 66 20 73 69 7a 65 20 | -(n.\mod.r)$.partitions.of.size. |
| 7780 | 24 6e 2f 72 24 2c 20 72 6f 75 6e 64 65 64 20 64 6f 77 6e 2c 20 61 6e 64 0a 20 20 20 20 24 6e 20 | $n/r$,.rounded.down,.and.....$n. |
| 77a0 | 5c 6d 6f 64 20 72 24 20 70 61 72 74 69 74 69 6f 6e 73 20 6f 66 20 73 69 7a 65 20 24 6e 2f 72 2b | \mod.r$.partitions.of.size.$n/r+ |
| 77c0 | 31 24 2c 20 72 6f 75 6e 64 65 64 20 64 6f 77 6e 2e 0a 0a 20 20 20 20 2e 2e 20 70 6c 6f 74 3a 3a | 1$,.rounded.down..........plot:: |
| 77e0 | 0a 0a 20 20 20 20 20 20 20 20 3e 3e 3e 20 6e 78 2e 64 72 61 77 28 6e 78 2e 74 75 72 61 6e 5f 67 | ..........>>>.nx.draw(nx.turan_g |
| 7800 | 72 61 70 68 28 36 2c 20 32 29 29 0a 0a 20 20 20 20 50 61 72 61 6d 65 74 65 72 73 0a 20 20 20 20 | raph(6,.2))......Parameters..... |
| 7820 | 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 6e 20 3a 20 69 6e 74 0a 20 20 20 20 20 20 20 20 54 | ----------.....n.:.int.........T |
| 7840 | 68 65 20 6e 75 6d 62 65 72 20 6f 66 20 6e 6f 64 65 73 2e 0a 20 20 20 20 72 20 3a 20 69 6e 74 0a | he.number.of.nodes......r.:.int. |
| 7860 | 20 20 20 20 20 20 20 20 54 68 65 20 6e 75 6d 62 65 72 20 6f 66 20 70 61 72 74 69 74 69 6f 6e 73 | ........The.number.of.partitions |
| 7880 | 2e 0a 20 20 20 20 20 20 20 20 4d 75 73 74 20 62 65 20 6c 65 73 73 20 74 68 61 6e 20 6f 72 20 65 | ..........Must.be.less.than.or.e |
| 78a0 | 71 75 61 6c 20 74 6f 20 6e 2e 0a 0a 20 20 20 20 4e 6f 74 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 0a | qual.to.n.......Notes.....-----. |
| 78c0 | 20 20 20 20 4d 75 73 74 20 73 61 74 69 73 66 79 20 24 31 20 3c 3d 20 72 20 3c 3d 20 6e 24 2e 0a | ....Must.satisfy.$1.<=.r.<=.n$.. |
| 78e0 | 20 20 20 20 54 68 65 20 67 72 61 70 68 20 68 61 73 20 24 28 72 2d 31 29 28 6e 5e 32 29 2f 28 32 | ....The.graph.has.$(r-1)(n^2)/(2 |
| 7900 | 72 29 24 20 65 64 67 65 73 2c 20 72 6f 75 6e 64 65 64 20 64 6f 77 6e 2e 0a 20 20 20 20 72 47 00 | r)$.edges,.rounded.down......rG. |
| 7920 | 00 00 7a 18 4d 75 73 74 20 73 61 74 69 73 66 79 20 31 20 3c 3d 20 72 20 3c 3d 20 6e 29 02 72 04 | ..z.Must.satisfy.1.<=.r.<=.n).r. |
| 7940 | 00 00 00 72 0b 00 00 00 29 04 72 23 00 00 00 72 24 00 00 00 da 0a 70 61 72 74 69 74 69 6f 6e 73 | ...r....).r#...r$.....partitions |
| 7960 | 72 31 00 00 00 73 04 00 00 00 20 20 20 20 72 2a 00 00 00 72 1a 00 00 00 72 1a 00 00 00 8a 03 00 | r1...s........r*...r....r....... |
| 7980 | 00 73 6b 00 00 00 80 00 f0 3c 00 0c 0d 90 01 8c 3b 90 51 8a 3b dc 0e 1b d0 1c 36 d3 0e 37 d0 08 | .sk......<......;.Q.;.....6..7.. |
| 79a0 | 37 f0 03 00 0c 17 dc 0e 1b d0 1c 36 d3 0e 37 d0 08 37 e0 12 13 90 71 91 26 90 18 98 51 a0 21 a0 | 7..........6..7..7....q.&...Q.!. |
| 79c0 | 61 a1 25 99 5b d1 11 29 a8 51 b0 21 a9 56 b0 61 a9 5a a8 4c b8 41 c0 01 b9 45 d1 2c 42 d1 11 42 | a.%.[..).Q.!.V.a.Z.L.A...E.,B..B |
| 79e0 | 80 4a dc 08 23 a0 5a d0 08 30 80 41 d8 0b 0c 80 48 72 32 00 00 00 63 02 00 00 00 00 00 00 00 00 | .J..#.Z..0.A....Hr2...c......... |
| 7a00 | 00 00 00 06 00 00 00 03 00 00 00 f3 0c 01 00 00 87 06 97 00 7c 00 5c 02 00 00 7d 02 7d 03 74 01 | ....................|.\...}.}.t. |
| 7a20 | 00 00 00 00 00 00 00 00 7c 03 7c 01 ab 02 00 00 00 00 00 00 7d 04 7c 04 6a 03 00 00 00 00 00 00 | ........|.|.........}.|.j....... |
| 7a40 | 00 00 00 00 00 00 00 00 00 00 00 00 ab 00 00 00 00 00 00 00 72 0b 74 05 00 00 00 00 00 00 00 00 | ....................r.t......... |
| 7a60 | 64 01 ab 01 00 00 00 00 00 00 82 01 74 07 00 00 00 00 00 00 00 00 7c 03 ab 01 00 00 00 00 00 00 | d...........t.........|......... |
| 7a80 | 64 02 6b 44 00 00 72 48 7c 03 5e 01 8a 06 7d 05 7c 04 6a 09 00 00 00 00 00 00 00 00 00 00 00 00 | d.kD..rH|.^...}.|.j............. |
| 7aa0 | 00 00 00 00 00 00 88 06 66 01 64 03 84 08 7c 05 44 00 ab 00 00 00 00 00 00 00 ab 01 00 00 00 00 | ........f.d...|.D............... |
| 7ac0 | 00 00 01 00 74 07 00 00 00 00 00 00 00 00 7c 05 ab 01 00 00 00 00 00 00 64 02 6b 44 00 00 72 1c | ....t.........|.........d.kD..r. |
| 7ae0 | 7c 04 6a 09 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 74 0b 00 00 00 00 00 00 00 00 | |.j...................t......... |
| 7b00 | 7c 05 64 04 ac 05 ab 02 00 00 00 00 00 00 ab 01 00 00 00 00 00 00 01 00 7c 04 53 00 29 06 61 ae | |.d.....................|.S.).a. |
| 7b20 | 02 00 00 52 65 74 75 72 6e 20 74 68 65 20 77 68 65 65 6c 20 67 72 61 70 68 0a 0a 20 20 20 20 54 | ...Return.the.wheel.graph......T |
| 7b40 | 68 65 20 77 68 65 65 6c 20 67 72 61 70 68 20 63 6f 6e 73 69 73 74 73 20 6f 66 20 61 20 68 75 62 | he.wheel.graph.consists.of.a.hub |
| 7b60 | 20 6e 6f 64 65 20 63 6f 6e 6e 65 63 74 65 64 20 74 6f 20 61 20 63 79 63 6c 65 20 6f 66 20 28 6e | .node.connected.to.a.cycle.of.(n |
| 7b80 | 2d 31 29 20 6e 6f 64 65 73 2e 0a 0a 20 20 20 20 2e 2e 20 70 6c 6f 74 3a 3a 0a 0a 20 20 20 20 20 | -1).nodes..........plot::....... |
| 7ba0 | 20 20 20 3e 3e 3e 20 6e 78 2e 64 72 61 77 28 6e 78 2e 77 68 65 65 6c 5f 67 72 61 70 68 28 35 29 | ...>>>.nx.draw(nx.wheel_graph(5) |
| 7bc0 | 29 0a 0a 20 20 20 20 50 61 72 61 6d 65 74 65 72 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d | )......Parameters.....---------- |
| 7be0 | 0a 20 20 20 20 6e 20 3a 20 69 6e 74 20 6f 72 20 69 74 65 72 61 62 6c 65 0a 20 20 20 20 20 20 20 | .....n.:.int.or.iterable........ |
| 7c00 | 20 49 66 20 61 6e 20 69 6e 74 65 67 65 72 2c 20 6e 6f 64 65 20 6c 61 62 65 6c 73 20 61 72 65 20 | .If.an.integer,.node.labels.are. |
| 7c20 | 30 20 74 6f 20 6e 20 77 69 74 68 20 63 65 6e 74 65 72 20 30 2e 0a 20 20 20 20 20 20 20 20 49 66 | 0.to.n.with.center.0..........If |
| 7c40 | 20 61 6e 20 69 74 65 72 61 62 6c 65 20 6f 66 20 6e 6f 64 65 73 2c 20 74 68 65 20 63 65 6e 74 65 | .an.iterable.of.nodes,.the.cente |
| 7c60 | 72 20 69 73 20 74 68 65 20 66 69 72 73 74 2e 0a 20 20 20 20 20 20 20 20 57 61 72 6e 69 6e 67 3a | r.is.the.first..........Warning: |
| 7c80 | 20 6e 20 69 73 20 6e 6f 74 20 63 68 65 63 6b 65 64 20 66 6f 72 20 64 75 70 6c 69 63 61 74 65 73 | .n.is.not.checked.for.duplicates |
| 7ca0 | 20 61 6e 64 20 69 66 20 70 72 65 73 65 6e 74 20 74 68 65 0a 20 20 20 20 20 20 20 20 72 65 73 75 | .and.if.present.the.........resu |
| 7cc0 | 6c 74 69 6e 67 20 67 72 61 70 68 20 6d 61 79 20 6e 6f 74 20 62 65 20 61 73 20 64 65 73 69 72 65 | lting.graph.may.not.be.as.desire |
| 7ce0 | 64 2e 20 4d 61 6b 65 20 73 75 72 65 20 79 6f 75 20 68 61 76 65 20 6e 6f 20 64 75 70 6c 69 63 61 | d..Make.sure.you.have.no.duplica |
| 7d00 | 74 65 73 2e 0a 20 20 20 20 63 72 65 61 74 65 5f 75 73 69 6e 67 20 3a 20 4e 65 74 77 6f 72 6b 58 | tes......create_using.:.NetworkX |
| 7d20 | 20 67 72 61 70 68 20 63 6f 6e 73 74 72 75 63 74 6f 72 2c 20 6f 70 74 69 6f 6e 61 6c 20 28 64 65 | .graph.constructor,.optional.(de |
| 7d40 | 66 61 75 6c 74 3d 6e 78 2e 47 72 61 70 68 29 0a 20 20 20 20 20 20 20 47 72 61 70 68 20 74 79 70 | fault=nx.Graph)........Graph.typ |
| 7d60 | 65 20 74 6f 20 63 72 65 61 74 65 2e 20 49 66 20 67 72 61 70 68 20 69 6e 73 74 61 6e 63 65 2c 20 | e.to.create..If.graph.instance,. |
| 7d80 | 74 68 65 6e 20 63 6c 65 61 72 65 64 20 62 65 66 6f 72 65 20 70 6f 70 75 6c 61 74 65 64 2e 0a 0a | then.cleared.before.populated... |
| 7da0 | 20 20 20 20 4e 6f 64 65 20 6c 61 62 65 6c 73 20 61 72 65 20 74 68 65 20 69 6e 74 65 67 65 72 73 | ....Node.labels.are.the.integers |
| 7dc0 | 20 30 20 74 6f 20 6e 20 2d 20 31 2e 0a 20 20 20 20 72 4a 00 00 00 72 47 00 00 00 63 01 00 00 00 | .0.to.n.-.1......rJ...rG...c.... |
| 7de0 | 00 00 00 00 00 00 00 00 03 00 00 00 33 00 00 00 f3 26 00 00 00 95 01 4b 00 01 00 97 00 7c 00 5d | ............3....&.....K.....|.] |
| 7e00 | 08 00 00 7d 01 89 02 7c 01 66 02 96 01 97 01 01 00 8c 0a 04 00 79 00 ad 03 77 01 72 36 00 00 00 | ...}...|.f...........y...w.r6... |
| 7e20 | 72 71 00 00 00 72 81 00 00 00 73 03 00 00 00 20 20 80 72 2a 00 00 00 72 3e 00 00 00 7a 1e 77 68 | rq...r....s.......r*...r>...z.wh |
| 7e40 | 65 65 6c 5f 67 72 61 70 68 2e 3c 6c 6f 63 61 6c 73 3e 2e 3c 67 65 6e 65 78 70 72 3e ce 03 00 00 | eel_graph.<locals>.<genexpr>.... |
| 7e60 | 73 15 00 00 00 f8 e8 00 f8 80 00 d2 18 35 a8 14 98 23 98 74 9c 1b d1 18 35 f9 72 84 00 00 00 54 | s............5...#.t....5.r....T |
| 7e80 | 72 5f 00 00 00 29 06 72 10 00 00 00 72 50 00 00 00 72 04 00 00 00 72 56 00 00 00 72 2f 00 00 00 | r_...).r....rP...r....rV...r/... |
| 7ea0 | 72 06 00 00 00 29 07 72 23 00 00 00 72 30 00 00 00 72 58 00 00 00 72 25 00 00 00 72 31 00 00 00 | r....).r#...r0...rX...r%...r1... |
| 7ec0 | da 03 72 69 6d 72 83 00 00 00 73 07 00 00 00 20 20 20 20 20 20 40 72 2a 00 00 00 72 1b 00 00 00 | ..rimr....s..........@r*...r.... |
| 7ee0 | 72 1b 00 00 00 b0 03 00 00 73 7c 00 00 00 f8 80 00 f0 2e 00 10 11 81 48 80 41 80 75 dc 08 13 90 | r........s|............H.A.u.... |
| 7f00 | 45 98 3c d3 08 28 80 41 d8 07 08 87 7d 81 7d 84 7f dc 0e 1b d0 1c 3a d3 0e 3b d0 08 3b e4 07 0a | E.<..(.A....}.}.......:..;..;... |
| 7f20 | 88 35 83 7a 90 41 82 7e d8 14 19 88 09 88 03 88 63 d8 08 09 d7 08 18 d1 08 18 d3 18 35 b0 13 d4 | .5.z.A.~........c...........5... |
| 7f40 | 18 35 d4 08 35 dc 0b 0e 88 73 8b 38 90 61 8a 3c d8 0c 0d d7 0c 1c d1 0c 1c 9c 58 a0 63 b0 24 d4 | .5..5....s.8.a.<..........X.c.$. |
| 7f60 | 1d 37 d4 0c 38 d8 0b 0c 80 48 72 32 00 00 00 63 00 00 00 00 00 00 00 00 00 00 00 00 08 00 00 00 | .7..8....Hr2...c................ |
| 7f80 | 07 00 00 00 f3 38 02 00 00 97 00 74 01 00 00 00 00 00 00 00 00 ab 00 00 00 00 00 00 00 7d 01 74 | .....8.....t.................}.t |
| 7fa0 | 03 00 00 00 00 00 00 00 00 7c 00 ab 01 00 00 00 00 00 00 64 01 6b 28 00 00 72 02 7c 01 53 00 09 | .........|.........d.k(..r.|.S.. |
| 7fc0 | 00 74 05 00 00 00 00 00 00 00 00 74 07 00 00 00 00 00 00 00 00 6a 08 00 00 00 00 00 00 00 00 00 | .t.........t.........j.......... |
| 7fe0 | 00 00 00 00 00 00 00 00 00 64 02 7c 00 7a 00 00 00 ab 01 00 00 00 00 00 00 ab 01 00 00 00 00 00 | .........d.|.z.................. |
| 8000 | 00 7d 02 7c 02 44 00 8f 03 8f 04 63 03 67 00 63 02 5d 11 00 00 5c 02 00 00 7d 03 7d 04 74 0b 00 | .}.|.D.....c.g.c.]...\...}.}.t.. |
| 8020 | 00 00 00 00 00 00 00 7c 03 7c 04 ab 02 00 00 00 00 00 00 91 02 8c 13 04 00 7d 05 7d 03 7d 04 74 | .......|.|...............}.}.}.t |
| 8040 | 0d 00 00 00 00 00 00 00 00 64 03 84 00 7c 00 44 00 ab 00 00 00 00 00 00 00 ab 01 00 00 00 00 00 | .........d...|.D................ |
| 8060 | 00 72 0e 74 0f 00 00 00 00 00 00 00 00 64 04 7c 00 9b 00 9d 02 ab 01 00 00 00 00 00 00 82 01 09 | .r.t.........d.|................ |
| 8080 | 00 74 13 00 00 00 00 00 00 00 00 7c 05 ab 01 00 00 00 00 00 00 44 00 5d 18 00 00 5c 02 00 00 7d | .t.........|.........D.]...\...} |
| 80a0 | 06 7d 07 7c 01 6a 15 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 07 7c 06 ac 05 ab | .}.|.j...................|.|.... |
| 80c0 | 02 00 00 00 00 00 00 01 00 8c 1a 04 00 09 00 74 07 00 00 00 00 00 00 00 00 6a 16 00 00 00 00 00 | ...............t.........j...... |
| 80e0 | 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 05 64 08 ab 02 00 00 00 00 00 00 44 00 5d 2a 00 00 5c | .............|.d.........D.]*..\ |
| 8100 | 02 00 00 7d 09 7d 0a 7c 01 6a 19 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 74 07 00 | ...}.}.|.j...................t.. |
| 8120 | 00 00 00 00 00 00 00 6a 1a 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 09 7c 0a ab | .......j...................|.|.. |
| 8140 | 02 00 00 00 00 00 00 ab 01 00 00 00 00 00 00 01 00 8c 2c 04 00 7c 01 53 00 63 02 01 00 63 03 7d | ..................,..|.S.c...c.} |
| 8160 | 04 7d 03 77 00 23 00 74 10 00 00 00 00 00 00 00 00 24 00 72 05 01 00 7c 00 7d 05 59 00 8c 80 77 | .}.w.#.t.........$.r...|.}.Y...w |
| 8180 | 00 78 03 59 00 77 01 23 00 74 10 00 00 00 00 00 00 00 00 24 00 72 11 7d 08 74 0f 00 00 00 00 00 | .x.Y.w.#.t.........$.r.}.t...... |
| 81a0 | 00 00 00 64 06 ab 01 00 00 00 00 00 00 7c 08 82 02 64 07 7d 08 7e 08 77 01 77 00 78 03 59 00 77 | ...d.........|...d.}.~.w.w.x.Y.w |
| 81c0 | 01 29 09 61 a6 07 00 00 52 65 74 75 72 6e 73 20 74 68 65 20 63 6f 6d 70 6c 65 74 65 20 6d 75 6c | .).a....Returns.the.complete.mul |
| 81e0 | 74 69 70 61 72 74 69 74 65 20 67 72 61 70 68 20 77 69 74 68 20 74 68 65 20 73 70 65 63 69 66 69 | tipartite.graph.with.the.specifi |
| 8200 | 65 64 20 73 75 62 73 65 74 20 73 69 7a 65 73 2e 0a 0a 20 20 20 20 2e 2e 20 70 6c 6f 74 3a 3a 0a | ed.subset.sizes..........plot::. |
| 8220 | 0a 20 20 20 20 20 20 20 20 3e 3e 3e 20 6e 78 2e 64 72 61 77 28 6e 78 2e 63 6f 6d 70 6c 65 74 65 | .........>>>.nx.draw(nx.complete |
| 8240 | 5f 6d 75 6c 74 69 70 61 72 74 69 74 65 5f 67 72 61 70 68 28 31 2c 20 32 2c 20 33 29 29 0a 0a 20 | _multipartite_graph(1,.2,.3))... |
| 8260 | 20 20 20 50 61 72 61 6d 65 74 65 72 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 | ...Parameters.....----------.... |
| 8280 | 20 73 75 62 73 65 74 5f 73 69 7a 65 73 20 3a 20 74 75 70 6c 65 20 6f 66 20 69 6e 74 65 67 65 72 | .subset_sizes.:.tuple.of.integer |
| 82a0 | 73 20 6f 72 20 74 75 70 6c 65 20 6f 66 20 6e 6f 64 65 20 69 74 65 72 61 62 6c 65 73 0a 20 20 20 | s.or.tuple.of.node.iterables.... |
| 82c0 | 20 20 20 20 54 68 65 20 61 72 67 75 6d 65 6e 74 73 20 63 61 6e 20 65 69 74 68 65 72 20 61 6c 6c | ....The.arguments.can.either.all |
| 82e0 | 20 62 65 20 69 6e 74 65 67 65 72 20 6e 75 6d 62 65 72 20 6f 66 20 6e 6f 64 65 73 20 6f 72 20 74 | .be.integer.number.of.nodes.or.t |
| 8300 | 68 65 79 0a 20 20 20 20 20 20 20 63 61 6e 20 61 6c 6c 20 62 65 20 69 74 65 72 61 62 6c 65 73 20 | hey........can.all.be.iterables. |
| 8320 | 6f 66 20 6e 6f 64 65 73 2e 20 49 66 20 69 6e 74 65 67 65 72 73 2c 20 74 68 65 79 20 72 65 70 72 | of.nodes..If.integers,.they.repr |
| 8340 | 65 73 65 6e 74 20 74 68 65 0a 20 20 20 20 20 20 20 6e 75 6d 62 65 72 20 6f 66 20 6e 6f 64 65 73 | esent.the........number.of.nodes |
| 8360 | 20 69 6e 20 65 61 63 68 20 73 75 62 73 65 74 20 6f 66 20 74 68 65 20 6d 75 6c 74 69 70 61 72 74 | .in.each.subset.of.the.multipart |
| 8380 | 69 74 65 20 67 72 61 70 68 2e 0a 20 20 20 20 20 20 20 49 66 20 69 74 65 72 61 62 6c 65 73 2c 20 | ite.graph.........If.iterables,. |
| 83a0 | 65 61 63 68 20 69 73 20 75 73 65 64 20 74 6f 20 63 72 65 61 74 65 20 74 68 65 20 6e 6f 64 65 73 | each.is.used.to.create.the.nodes |
| 83c0 | 20 66 6f 72 20 74 68 61 74 20 73 75 62 73 65 74 2e 0a 20 20 20 20 20 20 20 54 68 65 20 6c 65 6e | .for.that.subset.........The.len |
| 83e0 | 67 74 68 20 6f 66 20 73 75 62 73 65 74 5f 73 69 7a 65 73 20 69 73 20 74 68 65 20 6e 75 6d 62 65 | gth.of.subset_sizes.is.the.numbe |
| 8400 | 72 20 6f 66 20 73 75 62 73 65 74 73 2e 0a 0a 20 20 20 20 52 65 74 75 72 6e 73 0a 20 20 20 20 2d | r.of.subsets.......Returns.....- |
| 8420 | 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 47 20 3a 20 4e 65 74 77 6f 72 6b 58 20 47 72 61 70 68 0a 20 20 | ------.....G.:.NetworkX.Graph... |
| 8440 | 20 20 20 20 20 52 65 74 75 72 6e 73 20 74 68 65 20 63 6f 6d 70 6c 65 74 65 20 6d 75 6c 74 69 70 | .....Returns.the.complete.multip |
| 8460 | 61 72 74 69 74 65 20 67 72 61 70 68 20 77 69 74 68 20 74 68 65 20 73 70 65 63 69 66 69 65 64 20 | artite.graph.with.the.specified. |
| 8480 | 73 75 62 73 65 74 73 2e 0a 0a 20 20 20 20 20 20 20 46 6f 72 20 65 61 63 68 20 6e 6f 64 65 2c 20 | subsets..........For.each.node,. |
| 84a0 | 74 68 65 20 6e 6f 64 65 20 61 74 74 72 69 62 75 74 65 20 27 73 75 62 73 65 74 27 20 69 73 20 61 | the.node.attribute.'subset'.is.a |
| 84c0 | 6e 20 69 6e 74 65 67 65 72 0a 20 20 20 20 20 20 20 69 6e 64 69 63 61 74 69 6e 67 20 77 68 69 63 | n.integer........indicating.whic |
| 84e0 | 68 20 73 75 62 73 65 74 20 63 6f 6e 74 61 69 6e 73 20 74 68 65 20 6e 6f 64 65 2e 0a 0a 20 20 20 | h.subset.contains.the.node...... |
| 8500 | 20 45 78 61 6d 70 6c 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 43 72 65 61 74 | .Examples.....--------.....Creat |
| 8520 | 69 6e 67 20 61 20 63 6f 6d 70 6c 65 74 65 20 74 72 69 70 61 72 74 69 74 65 20 67 72 61 70 68 2c | ing.a.complete.tripartite.graph, |
| 8540 | 20 77 69 74 68 20 73 75 62 73 65 74 73 20 6f 66 20 6f 6e 65 2c 20 74 77 6f 2c 20 61 6e 64 20 74 | .with.subsets.of.one,.two,.and.t |
| 8560 | 68 72 65 65 0a 20 20 20 20 6e 6f 64 65 73 2c 20 72 65 73 70 65 63 74 69 76 65 6c 79 2e 0a 0a 20 | hree.....nodes,.respectively.... |
| 8580 | 20 20 20 20 20 20 20 3e 3e 3e 20 47 20 3d 20 6e 78 2e 63 6f 6d 70 6c 65 74 65 5f 6d 75 6c 74 69 | .......>>>.G.=.nx.complete_multi |
| 85a0 | 70 61 72 74 69 74 65 5f 67 72 61 70 68 28 31 2c 20 32 2c 20 33 29 0a 20 20 20 20 20 20 20 20 3e | partite_graph(1,.2,.3).........> |
| 85c0 | 3e 3e 20 5b 47 2e 6e 6f 64 65 73 5b 75 5d 5b 22 73 75 62 73 65 74 22 5d 20 66 6f 72 20 75 20 69 | >>.[G.nodes[u]["subset"].for.u.i |
| 85e0 | 6e 20 47 5d 0a 20 20 20 20 20 20 20 20 5b 30 2c 20 31 2c 20 31 2c 20 32 2c 20 32 2c 20 32 5d 0a | n.G].........[0,.1,.1,.2,.2,.2]. |
| 8600 | 20 20 20 20 20 20 20 20 3e 3e 3e 20 6c 69 73 74 28 47 2e 65 64 67 65 73 28 30 29 29 0a 20 20 20 | ........>>>.list(G.edges(0)).... |
| 8620 | 20 20 20 20 20 5b 28 30 2c 20 31 29 2c 20 28 30 2c 20 32 29 2c 20 28 30 2c 20 33 29 2c 20 28 30 | .....[(0,.1),.(0,.2),.(0,.3),.(0 |
| 8640 | 2c 20 34 29 2c 20 28 30 2c 20 35 29 5d 0a 20 20 20 20 20 20 20 20 3e 3e 3e 20 6c 69 73 74 28 47 | ,.4),.(0,.5)].........>>>.list(G |
| 8660 | 2e 65 64 67 65 73 28 32 29 29 0a 20 20 20 20 20 20 20 20 5b 28 32 2c 20 30 29 2c 20 28 32 2c 20 | .edges(2)).........[(2,.0),.(2,. |
| 8680 | 33 29 2c 20 28 32 2c 20 34 29 2c 20 28 32 2c 20 35 29 5d 0a 20 20 20 20 20 20 20 20 3e 3e 3e 20 | 3),.(2,.4),.(2,.5)].........>>>. |
| 86a0 | 6c 69 73 74 28 47 2e 65 64 67 65 73 28 34 29 29 0a 20 20 20 20 20 20 20 20 5b 28 34 2c 20 30 29 | list(G.edges(4)).........[(4,.0) |
| 86c0 | 2c 20 28 34 2c 20 31 29 2c 20 28 34 2c 20 32 29 5d 0a 0a 20 20 20 20 20 20 20 20 3e 3e 3e 20 47 | ,.(4,.1),.(4,.2)]..........>>>.G |
| 86e0 | 20 3d 20 6e 78 2e 63 6f 6d 70 6c 65 74 65 5f 6d 75 6c 74 69 70 61 72 74 69 74 65 5f 67 72 61 70 | .=.nx.complete_multipartite_grap |
| 8700 | 68 28 22 61 22 2c 20 22 62 63 22 2c 20 22 64 65 66 22 29 0a 20 20 20 20 20 20 20 20 3e 3e 3e 20 | h("a",."bc",."def").........>>>. |
| 8720 | 5b 47 2e 6e 6f 64 65 73 5b 75 5d 5b 22 73 75 62 73 65 74 22 5d 20 66 6f 72 20 75 20 69 6e 20 73 | [G.nodes[u]["subset"].for.u.in.s |
| 8740 | 6f 72 74 65 64 28 47 29 5d 0a 20 20 20 20 20 20 20 20 5b 30 2c 20 31 2c 20 31 2c 20 32 2c 20 32 | orted(G)].........[0,.1,.1,.2,.2 |
| 8760 | 2c 20 32 5d 0a 0a 20 20 20 20 4e 6f 74 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 0a 20 20 20 20 54 68 | ,.2]......Notes.....-----.....Th |
| 8780 | 69 73 20 66 75 6e 63 74 69 6f 6e 20 67 65 6e 65 72 61 6c 69 7a 65 73 20 73 65 76 65 72 61 6c 20 | is.function.generalizes.several. |
| 87a0 | 6f 74 68 65 72 20 67 72 61 70 68 20 62 75 69 6c 64 65 72 20 66 75 6e 63 74 69 6f 6e 73 2e 0a 0a | other.graph.builder.functions... |
| 87c0 | 20 20 20 20 2d 20 49 66 20 6e 6f 20 73 75 62 73 65 74 20 73 69 7a 65 73 20 61 72 65 20 67 69 76 | ....-.If.no.subset.sizes.are.giv |
| 87e0 | 65 6e 2c 20 74 68 69 73 20 72 65 74 75 72 6e 73 20 74 68 65 20 6e 75 6c 6c 20 67 72 61 70 68 2e | en,.this.returns.the.null.graph. |
| 8800 | 0a 20 20 20 20 2d 20 49 66 20 61 20 73 69 6e 67 6c 65 20 73 75 62 73 65 74 20 73 69 7a 65 20 60 | .....-.If.a.single.subset.size.` |
| 8820 | 6e 60 20 69 73 20 67 69 76 65 6e 2c 20 74 68 69 73 20 72 65 74 75 72 6e 73 20 74 68 65 20 65 6d | n`.is.given,.this.returns.the.em |
| 8840 | 70 74 79 20 67 72 61 70 68 20 6f 6e 0a 20 20 20 20 20 20 60 6e 60 20 6e 6f 64 65 73 2e 0a 20 20 | pty.graph.on.......`n`.nodes.... |
| 8860 | 20 20 2d 20 49 66 20 74 77 6f 20 73 75 62 73 65 74 20 73 69 7a 65 73 20 60 6d 60 20 61 6e 64 20 | ..-.If.two.subset.sizes.`m`.and. |
| 8880 | 60 6e 60 20 61 72 65 20 67 69 76 65 6e 2c 20 74 68 69 73 20 72 65 74 75 72 6e 73 20 74 68 65 20 | `n`.are.given,.this.returns.the. |
| 88a0 | 63 6f 6d 70 6c 65 74 65 0a 20 20 20 20 20 20 62 69 70 61 72 74 69 74 65 20 67 72 61 70 68 20 6f | complete.......bipartite.graph.o |
| 88c0 | 6e 20 60 6d 20 2b 20 6e 60 20 6e 6f 64 65 73 2e 0a 20 20 20 20 2d 20 49 66 20 73 75 62 73 65 74 | n.`m.+.n`.nodes......-.If.subset |
| 88e0 | 20 73 69 7a 65 73 20 60 31 60 20 61 6e 64 20 60 6e 60 20 61 72 65 20 67 69 76 65 6e 2c 20 74 68 | .sizes.`1`.and.`n`.are.given,.th |
| 8900 | 69 73 20 72 65 74 75 72 6e 73 20 74 68 65 20 73 74 61 72 20 67 72 61 70 68 20 6f 6e 0a 20 20 20 | is.returns.the.star.graph.on.... |
| 8920 | 20 20 20 60 6e 20 2b 20 31 60 20 6e 6f 64 65 73 2e 0a 0a 20 20 20 20 53 65 65 20 61 6c 73 6f 0a | ...`n.+.1`.nodes.......See.also. |
| 8940 | 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 63 6f 6d 70 6c 65 74 65 5f 62 69 70 61 72 74 | ....--------.....complete_bipart |
| 8960 | 69 74 65 5f 67 72 61 70 68 0a 20 20 20 20 72 02 00 00 00 29 01 72 02 00 00 00 63 01 00 00 00 00 | ite_graph.....r....).r....c..... |
| 8980 | 00 00 00 00 00 00 00 03 00 00 00 33 00 00 00 f3 26 00 00 00 4b 00 01 00 97 00 7c 00 5d 09 00 00 | ...........3....&...K.....|.]... |
| 89a0 | 7d 01 7c 01 64 00 6b 02 00 00 96 01 97 01 01 00 8c 0b 04 00 79 01 ad 03 77 01 29 02 72 02 00 00 | }.|.d.k.............y...w.).r... |
| 89c0 | 00 4e 72 71 00 00 00 29 02 72 38 00 00 00 da 04 73 69 7a 65 73 02 00 00 00 20 20 72 2a 00 00 00 | .Nrq...).r8.....sizes......r*... |
| 89e0 | 72 3e 00 00 00 7a 2e 63 6f 6d 70 6c 65 74 65 5f 6d 75 6c 74 69 70 61 72 74 69 74 65 5f 67 72 61 | r>...z.complete_multipartite_gra |
| 8a00 | 70 68 2e 3c 6c 6f 63 61 6c 73 3e 2e 3c 67 65 6e 65 78 70 72 3e 1d 04 00 00 73 14 00 00 00 e8 00 | ph.<locals>.<genexpr>....s...... |
| 8a20 | f8 80 00 d2 0e 31 98 44 88 74 90 61 8d 78 d1 0e 31 f9 73 04 00 00 00 82 0f 11 01 7a 24 4e 65 67 | .....1.D.t.a.x..1.s........z$Neg |
| 8a40 | 61 74 69 76 65 20 6e 75 6d 62 65 72 20 6f 66 20 6e 6f 64 65 73 20 6e 6f 74 20 76 61 6c 69 64 3a | ative.number.of.nodes.not.valid: |
| 8a60 | 20 29 01 da 06 73 75 62 73 65 74 7a 2b 41 72 67 75 6d 65 6e 74 73 20 6d 75 73 74 20 62 65 20 61 | .)...subsetz+Arguments.must.be.a |
| 8a80 | 6c 6c 20 69 6e 74 73 20 6f 72 20 61 6c 6c 20 69 74 65 72 61 62 6c 65 73 4e 72 34 00 00 00 29 0e | ll.ints.or.all.iterablesNr4...). |
| 8aa0 | 72 03 00 00 00 72 56 00 00 00 72 06 00 00 00 72 42 00 00 00 da 0a 61 63 63 75 6d 75 6c 61 74 65 | r....rV...r....rB.....accumulate |
| 8ac0 | 72 1e 00 00 00 da 03 61 6e 79 72 04 00 00 00 72 6c 00 00 00 da 09 65 6e 75 6d 65 72 61 74 65 72 | r......anyr....rl.....enumerater |
| 8ae0 | 44 00 00 00 72 43 00 00 00 72 2f 00 00 00 da 07 70 72 6f 64 75 63 74 29 0b da 0c 73 75 62 73 65 | D...rC...r/.....product)...subse |
| 8b00 | 74 5f 73 69 7a 65 73 72 31 00 00 00 da 07 65 78 74 65 6e 74 73 da 05 73 74 61 72 74 da 03 65 6e | t_sizesr1.....extents..start..en |
| 8b20 | 64 72 45 00 00 00 72 28 00 00 00 72 92 00 00 00 da 03 65 72 72 da 07 73 75 62 73 65 74 31 da 07 | drE...r(...r......err..subset1.. |
| 8b40 | 73 75 62 73 65 74 32 73 0b 00 00 00 20 20 20 20 20 20 20 20 20 20 20 72 2a 00 00 00 72 0b 00 00 | subset2s...............r*...r... |
| 8b60 | 00 72 0b 00 00 00 d4 03 00 00 73 2f 01 00 00 80 00 f4 7a 01 00 09 0e 8b 07 80 41 e4 07 0a 88 3c | .r........s/......z.......A....< |
| 8b80 | d3 07 18 98 41 d2 07 1d d8 0f 10 88 08 f0 06 07 05 57 01 dc 12 1a 9c 39 d7 1b 2f d1 1b 2f b0 04 | ....A............W.....9../../.. |
| 8ba0 | b0 7c d1 30 43 d3 1b 44 d3 12 45 88 07 d8 37 3e d7 12 3f a9 1a a8 15 b0 03 94 35 98 15 a0 03 d5 | .|.0C..D..E...7>..?.......5..... |
| 8bc0 | 13 24 d0 12 3f 88 07 d1 12 3f f4 08 00 0c 0f d1 0e 31 a0 4c d4 0e 31 d4 0b 31 dc 12 1f d0 22 46 | .$..?....?.......1.L..1..1...."F |
| 8be0 | c0 7c c0 6e d0 20 55 d3 12 56 d0 0c 56 f0 08 04 05 54 01 dc 19 22 a0 37 d3 19 2b f2 00 01 09 2f | .|.n..U..V..V....T...".7..+..../ |
| 8c00 | 89 49 88 41 88 76 d8 0c 0d d7 0c 1c d1 0c 1c 98 56 a8 41 d0 0c 1c d5 0c 2e f1 03 01 09 2f f4 0e | .I.A.v..........V.A........../.. |
| 8c20 | 00 1d 26 d7 1c 32 d1 1c 32 b0 37 b8 41 d3 1c 3e f2 00 01 05 3e d1 08 18 88 07 90 17 d8 08 09 d7 | ..&..2..2.7.A..>....>........... |
| 8c40 | 08 18 d1 08 18 9c 19 d7 19 2a d1 19 2a a8 37 b0 47 d3 19 3c d5 08 3d f0 03 01 05 3e e0 0b 0c 80 | .........*..*.7.G..<..=....>.... |
| 8c60 | 48 f9 f3 27 00 13 40 01 f8 dc 0b 14 f2 00 01 05 1f d8 12 1e 8a 07 f0 03 01 05 1f fb f4 16 00 0c | H..'..@......................... |
| 8c80 | 15 f2 00 01 05 54 01 dc 0e 1b d0 1c 49 d3 0e 4a d0 50 53 d0 08 53 fb f0 03 01 05 54 01 fa 73 3b | .....T......I..J.PS..S.....T..s; |
| 8ca0 | 00 00 00 9c 26 43 2e 00 c1 02 16 43 28 06 c1 18 03 43 2e 00 c1 3c 26 43 3f 00 c3 28 06 43 2e 00 | ....&C.....C(....C...<&C?..(.C.. |
| 8cc0 | c3 2e 0b 43 3c 03 c3 3b 01 43 3c 03 c3 3f 09 44 19 03 c4 08 0c 44 14 03 c4 14 05 44 19 03 72 36 | ...C<..;.C<..?.D.....D.....D..r6 |
| 8ce0 | 00 00 00 29 24 da 07 5f 5f 64 6f 63 5f 5f 72 42 00 00 00 72 75 00 00 00 da 08 6e 65 74 77 6f 72 | ...)$..__doc__rB...ru.....networ |
| 8d00 | 6b 78 72 40 00 00 00 da 10 6e 65 74 77 6f 72 6b 78 2e 63 6c 61 73 73 65 73 72 03 00 00 00 da 12 | kxr@.....networkx.classesr...... |
| 8d20 | 6e 65 74 77 6f 72 6b 78 2e 65 78 63 65 70 74 69 6f 6e 72 04 00 00 00 da 0e 6e 65 74 77 6f 72 6b | networkx.exceptionr......network |
| 8d40 | 78 2e 75 74 69 6c 73 72 05 00 00 00 72 06 00 00 00 da 07 5f 5f 61 6c 6c 5f 5f 72 2b 00 00 00 da | x.utilsr....r......__all__r+.... |
| 8d60 | 0d 5f 64 69 73 70 61 74 63 68 61 62 6c 65 72 11 00 00 00 72 12 00 00 00 72 07 00 00 00 72 08 00 | ._dispatchabler....r....r....r.. |
| 8d80 | 00 00 72 09 00 00 00 72 0a 00 00 00 72 0c 00 00 00 72 0d 00 00 00 72 0e 00 00 00 72 0f 00 00 00 | ..r....r....r....r....r....r.... |
| 8da0 | 72 10 00 00 00 72 13 00 00 00 72 14 00 00 00 72 15 00 00 00 72 16 00 00 00 72 17 00 00 00 72 18 | r....r....r....r....r....r....r. |
| 8dc0 | 00 00 00 72 19 00 00 00 72 1a 00 00 00 72 1b 00 00 00 72 0b 00 00 00 72 71 00 00 00 72 32 00 00 | ...r....r....r....r....rq...r2.. |
| 8de0 | 00 72 2a 00 00 00 fa 08 3c 6d 6f 64 75 6c 65 3e 72 a5 00 00 00 01 00 00 00 73 98 03 00 00 f0 03 | .r*.....<module>r........s...... |
| 8e00 | 01 01 01 f1 02 0a 01 04 f3 18 00 01 11 db 00 0e e3 00 15 dd 00 22 dd 00 2c df 00 34 f2 04 16 0b | ....................."..,..4.... |
| 8e20 | 02 80 07 f2 3c 0f 01 16 f0 24 00 02 12 80 12 d7 01 11 d1 01 11 98 14 a8 54 d4 01 32 f2 02 22 01 | ....<....$..............T..2..". |
| 8e40 | 0d f3 03 00 02 33 f0 02 22 01 0d f0 4a 01 00 02 12 80 12 d7 01 11 d1 01 11 98 14 a8 54 d4 01 32 | .....3.."...J...............T..2 |
| 8e60 | f1 02 2b 01 0d f3 03 00 02 33 f0 02 2b 01 0d f0 5c 01 00 02 12 80 12 d7 01 11 d1 01 11 98 14 a8 | ..+......3..+...\............... |
| 8e80 | 54 d4 01 32 f2 02 2e 01 3b f3 03 00 02 33 f0 02 2e 01 3b f0 62 01 00 02 12 80 12 d7 01 11 d1 01 | T..2....;....3....;.b........... |
| 8ea0 | 11 98 14 a8 54 d4 01 32 f2 02 45 01 01 0d f3 03 00 02 33 f0 02 45 01 01 0d f0 50 02 00 02 12 80 | ....T..2..E.......3..E....P..... |
| 8ec0 | 12 d7 01 11 d1 01 11 98 14 a8 54 d4 01 32 f2 02 22 01 0d f3 03 00 02 33 f0 02 22 01 0d f0 4a 01 | ..........T..2.."......3.."...J. |
| 8ee0 | 00 02 12 80 12 d7 01 11 d1 01 11 98 14 a8 54 d4 01 32 d9 01 10 90 11 d3 01 13 f2 02 2b 01 0d f3 | ..............T..2..........+... |
| 8f00 | 03 00 02 14 f3 03 00 02 33 f0 04 2b 01 0d f0 5c 01 00 02 12 80 12 d7 01 11 d1 01 11 98 14 a8 54 | ........3..+...\...............T |
| 8f20 | d4 01 32 f2 02 10 01 0d f3 03 00 02 33 f0 02 10 01 0d f0 26 00 02 12 80 12 d7 01 11 d1 01 11 98 | ..2.........3......&............ |
| 8f40 | 14 a8 54 d4 01 32 f2 02 47 01 01 0d f3 03 00 02 33 f0 02 47 01 01 0d f0 54 02 00 02 12 80 12 d7 | ..T..2..G.......3..G....T....... |
| 8f60 | 01 11 d1 01 11 98 14 a8 54 d4 01 32 d9 01 10 90 11 d3 01 13 f2 02 1b 01 0d f3 03 00 02 14 f3 03 | ........T..2.................... |
| 8f80 | 00 02 33 f0 04 1b 01 0d f0 3c 00 02 12 80 12 d7 01 11 d1 01 11 98 14 a8 54 d4 01 32 f2 02 48 01 | ..3......<..............T..2..H. |
| 8fa0 | 01 0d f3 03 00 02 33 f0 02 48 01 01 0d f0 56 02 00 02 12 80 12 d7 01 11 d1 01 11 98 14 a8 54 d4 | ......3..H....V...............T. |
| 8fc0 | 01 32 d9 01 10 90 11 d3 01 13 d8 12 13 a0 24 b0 05 f2 00 5e 01 01 0d f3 03 00 02 14 f3 03 00 02 | .2............$....^............ |
| 8fe0 | 33 f0 04 5e 01 01 0d f0 42 03 00 02 12 80 12 d7 01 11 d1 01 11 98 14 a8 54 d4 01 32 f2 02 13 01 | 3..^....B...............T..2.... |
| 9000 | 0d f3 03 00 02 33 f0 02 13 01 0d f0 2c 00 02 12 80 12 d7 01 11 d1 01 11 98 14 a8 54 d4 01 32 d9 | .....3......,..............T..2. |
| 9020 | 01 10 90 21 90 51 90 16 d3 01 18 f2 02 3e 01 0d f3 03 00 02 19 f3 03 00 02 33 f0 04 3e 01 0d f0 | ...!.Q.......>...........3..>... |
| 9040 | 42 02 00 02 12 80 12 d7 01 11 d1 01 11 98 14 a8 54 d4 01 32 f2 02 07 01 0d f3 03 00 02 33 f0 02 | B...............T..2.........3.. |
| 9060 | 07 01 0d f0 14 00 02 12 80 12 d7 01 11 d1 01 11 98 14 a8 54 d4 01 32 d9 01 10 90 11 d3 01 13 f2 | ...................T..2......... |
| 9080 | 02 15 01 0d f3 03 00 02 14 f3 03 00 02 33 f0 04 15 01 0d f0 30 00 02 12 80 12 d7 01 11 d1 01 11 | .............3......0........... |
| 90a0 | 98 14 a8 54 d4 01 32 d9 01 10 90 11 d3 01 13 f2 02 22 01 0d f3 03 00 02 14 f3 03 00 02 33 f0 04 | ...T..2.........."...........3.. |
| 90c0 | 22 01 0d f0 4a 01 00 02 12 80 12 d7 01 11 d1 01 11 98 14 a8 54 d4 01 32 d9 01 10 90 21 90 51 90 | "...J...............T..2....!.Q. |
| 90e0 | 16 d3 01 18 f2 02 39 01 0d f3 03 00 02 19 f3 03 00 02 33 f0 04 39 01 0d f0 78 01 00 02 12 80 12 | ......9...........3..9...x...... |
| 9100 | d7 01 11 d1 01 11 98 14 a8 54 d4 01 32 f2 02 09 01 0d f3 03 00 02 33 f0 02 09 01 0d f0 18 00 02 | .........T..2.........3......... |
| 9120 | 12 80 12 d7 01 11 d1 01 11 98 14 a8 54 d4 01 32 f1 02 22 01 0d f3 03 00 02 33 f0 02 22 01 0d f0 | ............T..2.."......3.."... |
| 9140 | 4a 01 00 02 12 80 12 d7 01 11 d1 01 11 98 14 a8 54 d4 01 32 d9 01 10 90 11 d3 01 13 f2 02 1f 01 | J...............T..2............ |
| 9160 | 0d f3 03 00 02 14 f3 03 00 02 33 f0 04 1f 01 0d f0 44 01 00 02 12 80 12 d7 01 11 d1 01 11 98 14 | ..........3......D.............. |
| 9180 | a8 54 d4 01 32 f1 02 57 01 01 0d f3 03 00 02 33 f1 02 57 01 01 0d 72 32 00 00 00 | .T..2..W.......3..W...r2... |