| ofs | hex dump | ascii |
|---|
| 0000 | cb 0d 0d 0a 00 00 00 00 85 fa a7 68 bc 34 00 00 e3 00 00 00 00 00 00 00 00 00 00 00 00 05 00 00 | ...........h.4.................. |
| 0020 | 00 00 00 00 00 f3 a6 01 00 00 97 00 64 00 5a 00 64 01 64 02 6c 01 6d 02 5a 02 01 00 64 01 64 03 | ............d.Z.d.d.l.m.Z...d.d. |
| 0040 | 6c 03 6d 04 5a 04 01 00 64 01 64 04 6c 05 5a 06 64 01 64 05 6c 07 6d 08 5a 08 01 00 64 01 64 06 | l.m.Z...d.d.l.Z.d.d.l.m.Z...d.d. |
| 0060 | 6c 09 6d 0a 5a 0a 01 00 64 01 64 07 6c 0b 6d 0c 5a 0c 6d 0d 5a 0d 6d 0e 5a 0e 01 00 64 01 64 08 | l.m.Z...d.d.l.m.Z.m.Z.m.Z...d.d. |
| 0080 | 6c 0f 6d 10 5a 10 01 00 64 01 64 09 6c 11 6d 12 5a 12 6d 13 5a 13 6d 14 5a 14 01 00 67 00 64 0a | l.m.Z...d.d.l.m.Z.m.Z.m.Z...g.d. |
| 00a0 | a2 01 5a 15 02 00 65 06 6a 2c 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 64 04 64 0b | ..Z...e.j,..................d.d. |
| 00c0 | ac 0c ab 02 00 00 00 00 00 00 02 00 65 13 64 01 64 0d 67 02 ab 01 00 00 00 00 00 00 64 13 64 0e | ............e.d.d.g.........d.d. |
| 00e0 | 84 01 ab 00 00 00 00 00 00 00 ab 00 00 00 00 00 00 00 5a 17 02 00 65 06 6a 2c 00 00 00 00 00 00 | ..................Z...e.j,...... |
| 0100 | 00 00 00 00 00 00 00 00 00 00 00 00 64 04 64 0b ac 0c ab 02 00 00 00 00 00 00 64 14 64 0f 84 01 | ............d.d...........d.d... |
| 0120 | ab 00 00 00 00 00 00 00 5a 18 02 00 65 06 6a 2c 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | ........Z...e.j,................ |
| 0140 | 00 00 64 04 64 0b ac 0c ab 02 00 00 00 00 00 00 64 10 84 00 ab 00 00 00 00 00 00 00 5a 19 02 00 | ..d.d...........d...........Z... |
| 0160 | 65 06 6a 2c 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 64 04 64 0b ac 0c ab 02 00 00 | e.j,..................d.d....... |
| 0180 | 00 00 00 00 09 00 64 15 64 11 84 01 ab 00 00 00 00 00 00 00 5a 1a 02 00 65 06 6a 2c 00 00 00 00 | ......d.d...........Z...e.j,.... |
| 01a0 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 64 04 64 0b ac 0c ab 02 00 00 00 00 00 00 09 00 64 15 | ..............d.d.............d. |
| 01c0 | 64 12 84 01 ab 00 00 00 00 00 00 00 5a 1b 79 04 29 16 61 fd 02 00 00 46 75 6e 63 74 69 6f 6e 73 | d...........Z.y.).a....Functions |
| 01e0 | 20 66 6f 72 20 67 65 6e 65 72 61 74 69 6e 67 20 67 72 69 64 20 67 72 61 70 68 73 20 61 6e 64 20 | .for.generating.grid.graphs.and. |
| 0200 | 6c 61 74 74 69 63 65 73 0a 0a 54 68 65 20 3a 66 75 6e 63 3a 60 67 72 69 64 5f 32 64 5f 67 72 61 | lattices..The.:func:`grid_2d_gra |
| 0220 | 70 68 60 2c 20 3a 66 75 6e 63 3a 60 74 72 69 61 6e 67 75 6c 61 72 5f 6c 61 74 74 69 63 65 5f 67 | ph`,.:func:`triangular_lattice_g |
| 0240 | 72 61 70 68 60 2c 20 61 6e 64 0a 3a 66 75 6e 63 3a 60 68 65 78 61 67 6f 6e 61 6c 5f 6c 61 74 74 | raph`,.and.:func:`hexagonal_latt |
| 0260 | 69 63 65 5f 67 72 61 70 68 60 20 66 75 6e 63 74 69 6f 6e 73 20 63 6f 72 72 65 73 70 6f 6e 64 20 | ice_graph`.functions.correspond. |
| 0280 | 74 6f 20 74 68 65 20 74 68 72 65 65 0a 60 72 65 67 75 6c 61 72 20 74 69 6c 69 6e 67 73 20 6f 66 | to.the.three.`regular.tilings.of |
| 02a0 | 20 74 68 65 20 70 6c 61 6e 65 60 5f 2c 20 74 68 65 20 73 71 75 61 72 65 2c 20 74 72 69 61 6e 67 | .the.plane`_,.the.square,.triang |
| 02c0 | 75 6c 61 72 2c 20 61 6e 64 20 68 65 78 61 67 6f 6e 61 6c 0a 74 69 6c 69 6e 67 73 2c 20 72 65 73 | ular,.and.hexagonal.tilings,.res |
| 02e0 | 70 65 63 74 69 76 65 6c 79 2e 20 3a 66 75 6e 63 3a 60 67 72 69 64 5f 67 72 61 70 68 60 20 61 6e | pectively..:func:`grid_graph`.an |
| 0300 | 64 20 3a 66 75 6e 63 3a 60 68 79 70 65 72 63 75 62 65 5f 67 72 61 70 68 60 0a 61 72 65 20 73 69 | d.:func:`hypercube_graph`.are.si |
| 0320 | 6d 69 6c 61 72 20 66 6f 72 20 61 72 62 69 74 72 61 72 79 20 64 69 6d 65 6e 73 69 6f 6e 73 2e 20 | milar.for.arbitrary.dimensions.. |
| 0340 | 55 73 65 66 75 6c 20 72 65 6c 65 76 61 6e 74 20 64 69 73 63 75 73 73 69 6f 6e 20 63 61 6e 0a 62 | Useful.relevant.discussion.can.b |
| 0360 | 65 20 66 6f 75 6e 64 20 61 62 6f 75 74 20 60 54 72 69 61 6e 67 75 6c 61 72 20 54 69 6c 69 6e 67 | e.found.about.`Triangular.Tiling |
| 0380 | 60 5f 2c 20 61 6e 64 20 60 53 71 75 61 72 65 2c 20 48 65 78 20 61 6e 64 20 54 72 69 61 6e 67 6c | `_,.and.`Square,.Hex.and.Triangl |
| 03a0 | 65 20 47 72 69 64 73 60 5f 0a 0a 2e 2e 20 5f 72 65 67 75 6c 61 72 20 74 69 6c 69 6e 67 73 20 6f | e.Grids`_....._regular.tilings.o |
| 03c0 | 66 20 74 68 65 20 70 6c 61 6e 65 3a 20 68 74 74 70 73 3a 2f 2f 65 6e 2e 77 69 6b 69 70 65 64 69 | f.the.plane:.https://en.wikipedi |
| 03e0 | 61 2e 6f 72 67 2f 77 69 6b 69 2f 4c 69 73 74 5f 6f 66 5f 72 65 67 75 6c 61 72 5f 70 6f 6c 79 74 | a.org/wiki/List_of_regular_polyt |
| 0400 | 6f 70 65 73 5f 61 6e 64 5f 63 6f 6d 70 6f 75 6e 64 73 23 45 75 63 6c 69 64 65 61 6e 5f 74 69 6c | opes_and_compounds#Euclidean_til |
| 0420 | 69 6e 67 73 0a 2e 2e 20 5f 53 71 75 61 72 65 2c 20 48 65 78 20 61 6e 64 20 54 72 69 61 6e 67 6c | ings...._Square,.Hex.and.Triangl |
| 0440 | 65 20 47 72 69 64 73 3a 20 68 74 74 70 3a 2f 2f 77 77 77 2d 63 73 2d 73 74 75 64 65 6e 74 73 2e | e.Grids:.http://www-cs-students. |
| 0460 | 73 74 61 6e 66 6f 72 64 2e 65 64 75 2f 7e 61 6d 69 74 70 2f 67 61 6d 65 2d 70 72 6f 67 72 61 6d | stanford.edu/~amitp/game-program |
| 0480 | 6d 69 6e 67 2f 67 72 69 64 73 2f 0a 2e 2e 20 5f 54 72 69 61 6e 67 75 6c 61 72 20 54 69 6c 69 6e | ming/grids/...._Triangular.Tilin |
| 04a0 | 67 3a 20 68 74 74 70 73 3a 2f 2f 65 6e 2e 77 69 6b 69 70 65 64 69 61 2e 6f 72 67 2f 77 69 6b 69 | g:.https://en.wikipedia.org/wiki |
| 04c0 | 2f 54 72 69 61 6e 67 75 6c 61 72 5f 74 69 6c 69 6e 67 0a 0a e9 00 00 00 00 29 01 da 06 72 65 70 | /Triangular_tiling.......)...rep |
| 04e0 | 65 61 74 29 01 da 04 73 71 72 74 4e 29 01 da 13 73 65 74 5f 6e 6f 64 65 5f 61 74 74 72 69 62 75 | eat)...sqrtN)...set_node_attribu |
| 0500 | 74 65 73 29 01 da 0d 4e 65 74 77 6f 72 6b 58 45 72 72 6f 72 29 03 da 0b 63 79 63 6c 65 5f 67 72 | tes)...NetworkXError)...cycle_gr |
| 0520 | 61 70 68 da 0b 65 6d 70 74 79 5f 67 72 61 70 68 da 0a 70 61 74 68 5f 67 72 61 70 68 29 01 da 0d | aph..empty_graph..path_graph)... |
| 0540 | 72 65 6c 61 62 65 6c 5f 6e 6f 64 65 73 29 03 da 07 66 6c 61 74 74 65 6e da 0f 6e 6f 64 65 73 5f | relabel_nodes)...flatten..nodes_ |
| 0560 | 6f 72 5f 6e 75 6d 62 65 72 da 08 70 61 69 72 77 69 73 65 29 05 da 0d 67 72 69 64 5f 32 64 5f 67 | or_number..pairwise)...grid_2d_g |
| 0580 | 72 61 70 68 da 0a 67 72 69 64 5f 67 72 61 70 68 da 0f 68 79 70 65 72 63 75 62 65 5f 67 72 61 70 | raph..grid_graph..hypercube_grap |
| 05a0 | 68 da 18 74 72 69 61 6e 67 75 6c 61 72 5f 6c 61 74 74 69 63 65 5f 67 72 61 70 68 da 17 68 65 78 | h..triangular_lattice_graph..hex |
| 05c0 | 61 67 6f 6e 61 6c 5f 6c 61 74 74 69 63 65 5f 67 72 61 70 68 54 29 02 da 06 67 72 61 70 68 73 da | agonal_lattice_graphT)...graphs. |
| 05e0 | 0d 72 65 74 75 72 6e 73 5f 67 72 61 70 68 e9 01 00 00 00 63 04 00 00 00 00 00 00 00 00 00 00 00 | .returns_graph.....c............ |
| 0600 | 06 00 00 00 03 00 00 00 f3 58 02 00 00 87 0a 87 0b 87 0c 97 00 74 01 00 00 00 00 00 00 00 00 64 | .........X...........t.........d |
| 0620 | 01 7c 03 ab 02 00 00 00 00 00 00 7d 04 7c 00 5c 02 00 00 7d 05 7d 06 7c 01 5c 02 00 00 7d 07 8a | .|.........}.|.\...}.}.|.\...}.. |
| 0640 | 0a 7c 04 6a 03 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 88 0a 66 01 64 02 84 08 7c | .|.j.....................f.d...| |
| 0660 | 06 44 00 ab 00 00 00 00 00 00 00 ab 01 00 00 00 00 00 00 01 00 7c 04 6a 05 00 00 00 00 00 00 00 | .D...................|.j........ |
| 0680 | 00 00 00 00 00 00 00 00 00 00 00 88 0a 66 01 64 03 84 08 74 07 00 00 00 00 00 00 00 00 7c 06 ab | .............f.d...t.........|.. |
| 06a0 | 01 00 00 00 00 00 00 44 00 ab 00 00 00 00 00 00 00 ab 01 00 00 00 00 00 00 01 00 7c 04 6a 05 00 | .......D...................|.j.. |
| 06c0 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 88 0a 66 01 64 04 84 08 7c 06 44 00 ab 00 00 | ...................f.d...|.D.... |
| 06e0 | 00 00 00 00 00 ab 01 00 00 00 00 00 00 01 00 09 00 7c 02 5c 02 00 00 7d 08 7d 09 7c 08 72 33 74 | .................|.\...}.}.|.r3t |
| 0700 | 0b 00 00 00 00 00 00 00 00 7c 06 ab 01 00 00 00 00 00 00 64 05 6b 44 00 00 72 25 7c 06 64 01 19 | .........|.........d.kD..r%|.d.. |
| 0720 | 00 00 00 8a 0b 7c 06 64 06 19 00 00 00 8a 0c 7c 04 6a 05 00 00 00 00 00 00 00 00 00 00 00 00 00 | .....|.d.......|.j.............. |
| 0740 | 00 00 00 00 00 88 0b 88 0c 66 02 64 07 84 08 89 0a 44 00 ab 00 00 00 00 00 00 00 ab 01 00 00 00 | .........f.d.....D.............. |
| 0760 | 00 00 00 01 00 7c 09 72 33 74 0b 00 00 00 00 00 00 00 00 89 0a ab 01 00 00 00 00 00 00 64 05 6b | .....|.r3t...................d.k |
| 0780 | 44 00 00 72 25 89 0a 64 01 19 00 00 00 8a 0b 89 0a 64 06 19 00 00 00 8a 0c 7c 04 6a 05 00 00 00 | D..r%..d.........d.......|.j.... |
| 07a0 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 88 0b 88 0c 66 02 64 08 84 08 7c 06 44 00 ab 00 00 | ...................f.d...|.D.... |
| 07c0 | 00 00 00 00 00 ab 01 00 00 00 00 00 00 01 00 7c 04 6a 0d 00 00 00 00 00 00 00 00 00 00 00 00 00 | ...............|.j.............. |
| 07e0 | 00 00 00 00 00 ab 00 00 00 00 00 00 00 72 26 7c 04 6a 05 00 00 00 00 00 00 00 00 00 00 00 00 00 | .............r&|.j.............. |
| 0800 | 00 00 00 00 00 64 09 84 00 7c 04 6a 0f 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ab | .....d...|.j.................... |
| 0820 | 00 00 00 00 00 00 00 44 00 ab 00 00 00 00 00 00 00 ab 01 00 00 00 00 00 00 01 00 7c 04 53 00 23 | .......D...................|.S.# |
| 0840 | 00 74 08 00 00 00 00 00 00 00 00 24 00 72 07 01 00 7c 02 78 01 7d 08 7d 09 59 00 8c b1 77 00 78 | .t.........$.r...|.x.}.}.Y...w.x |
| 0860 | 03 59 00 77 01 29 0a 61 5e 03 00 00 52 65 74 75 72 6e 73 20 74 68 65 20 74 77 6f 2d 64 69 6d 65 | .Y.w.).a^...Returns.the.two-dime |
| 0880 | 6e 73 69 6f 6e 61 6c 20 67 72 69 64 20 67 72 61 70 68 2e 0a 0a 20 20 20 20 54 68 65 20 67 72 69 | nsional.grid.graph.......The.gri |
| 08a0 | 64 20 67 72 61 70 68 20 68 61 73 20 65 61 63 68 20 6e 6f 64 65 20 63 6f 6e 6e 65 63 74 65 64 20 | d.graph.has.each.node.connected. |
| 08c0 | 74 6f 20 69 74 73 20 66 6f 75 72 20 6e 65 61 72 65 73 74 20 6e 65 69 67 68 62 6f 72 73 2e 0a 0a | to.its.four.nearest.neighbors... |
| 08e0 | 20 20 20 20 50 61 72 61 6d 65 74 65 72 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 | ....Parameters.....----------... |
| 0900 | 20 20 6d 2c 20 6e 20 3a 20 69 6e 74 20 6f 72 20 69 74 65 72 61 62 6c 65 20 63 6f 6e 74 61 69 6e | ..m,.n.:.int.or.iterable.contain |
| 0920 | 65 72 20 6f 66 20 6e 6f 64 65 73 0a 20 20 20 20 20 20 20 20 49 66 20 61 6e 20 69 6e 74 65 67 65 | er.of.nodes.........If.an.intege |
| 0940 | 72 2c 20 6e 6f 64 65 73 20 61 72 65 20 66 72 6f 6d 20 60 72 61 6e 67 65 28 6e 29 60 2e 0a 20 20 | r,.nodes.are.from.`range(n)`.... |
| 0960 | 20 20 20 20 20 20 49 66 20 61 20 63 6f 6e 74 61 69 6e 65 72 2c 20 65 6c 65 6d 65 6e 74 73 20 62 | ......If.a.container,.elements.b |
| 0980 | 65 63 6f 6d 65 20 74 68 65 20 63 6f 6f 72 64 69 6e 61 74 65 20 6f 66 20 74 68 65 20 6e 6f 64 65 | ecome.the.coordinate.of.the.node |
| 09a0 | 73 2e 0a 0a 20 20 20 20 70 65 72 69 6f 64 69 63 20 3a 20 62 6f 6f 6c 20 6f 72 20 69 74 65 72 61 | s.......periodic.:.bool.or.itera |
| 09c0 | 62 6c 65 0a 20 20 20 20 20 20 20 20 49 66 20 60 70 65 72 69 6f 64 69 63 60 20 69 73 20 54 72 75 | ble.........If.`periodic`.is.Tru |
| 09e0 | 65 2c 20 62 6f 74 68 20 64 69 6d 65 6e 73 69 6f 6e 73 20 61 72 65 20 70 65 72 69 6f 64 69 63 2e | e,.both.dimensions.are.periodic. |
| 0a00 | 20 49 66 20 46 61 6c 73 65 2c 20 6e 6f 6e 65 0a 20 20 20 20 20 20 20 20 61 72 65 20 70 65 72 69 | .If.False,.none.........are.peri |
| 0a20 | 6f 64 69 63 2e 20 20 49 66 20 60 70 65 72 69 6f 64 69 63 60 20 69 73 20 69 74 65 72 61 62 6c 65 | odic...If.`periodic`.is.iterable |
| 0a40 | 2c 20 69 74 20 73 68 6f 75 6c 64 20 79 69 65 6c 64 20 32 20 62 6f 6f 6c 0a 20 20 20 20 20 20 20 | ,.it.should.yield.2.bool........ |
| 0a60 | 20 76 61 6c 75 65 73 20 69 6e 64 69 63 61 74 69 6e 67 20 77 68 65 74 68 65 72 20 74 68 65 20 31 | .values.indicating.whether.the.1 |
| 0a80 | 73 74 20 61 6e 64 20 32 6e 64 20 61 78 65 73 2c 20 72 65 73 70 65 63 74 69 76 65 6c 79 2c 20 61 | st.and.2nd.axes,.respectively,.a |
| 0aa0 | 72 65 0a 20 20 20 20 20 20 20 20 70 65 72 69 6f 64 69 63 2e 0a 0a 20 20 20 20 63 72 65 61 74 65 | re.........periodic.......create |
| 0ac0 | 5f 75 73 69 6e 67 20 3a 20 4e 65 74 77 6f 72 6b 58 20 67 72 61 70 68 20 63 6f 6e 73 74 72 75 63 | _using.:.NetworkX.graph.construc |
| 0ae0 | 74 6f 72 2c 20 6f 70 74 69 6f 6e 61 6c 20 28 64 65 66 61 75 6c 74 3d 6e 78 2e 47 72 61 70 68 29 | tor,.optional.(default=nx.Graph) |
| 0b00 | 0a 20 20 20 20 20 20 20 20 47 72 61 70 68 20 74 79 70 65 20 74 6f 20 63 72 65 61 74 65 2e 20 49 | .........Graph.type.to.create..I |
| 0b20 | 66 20 67 72 61 70 68 20 69 6e 73 74 61 6e 63 65 2c 20 74 68 65 6e 20 63 6c 65 61 72 65 64 20 62 | f.graph.instance,.then.cleared.b |
| 0b40 | 65 66 6f 72 65 20 70 6f 70 75 6c 61 74 65 64 2e 0a 0a 20 20 20 20 52 65 74 75 72 6e 73 0a 20 20 | efore.populated.......Returns... |
| 0b60 | 20 20 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 4e 65 74 77 6f 72 6b 58 20 67 72 61 70 68 0a 20 20 20 | ..-------.....NetworkX.graph.... |
| 0b80 | 20 20 20 20 20 54 68 65 20 28 70 6f 73 73 69 62 6c 79 20 70 65 72 69 6f 64 69 63 29 20 67 72 69 | .....The.(possibly.periodic).gri |
| 0ba0 | 64 20 67 72 61 70 68 20 6f 66 20 74 68 65 20 73 70 65 63 69 66 69 65 64 20 64 69 6d 65 6e 73 69 | d.graph.of.the.specified.dimensi |
| 0bc0 | 6f 6e 73 2e 0a 0a 20 20 20 20 72 02 00 00 00 63 01 00 00 00 00 00 00 00 00 00 00 00 04 00 00 00 | ons.......r....c................ |
| 0be0 | 33 00 00 00 f3 34 00 00 00 95 01 4b 00 01 00 97 00 7c 00 5d 0f 00 00 7d 01 89 03 44 00 5d 08 00 | 3....4.....K.....|.]...}...D.].. |
| 0c00 | 00 7d 02 7c 01 7c 02 66 02 96 01 97 01 01 00 8c 0a 04 00 8c 11 04 00 79 00 ad 03 77 01 a9 01 4e | .}.|.|.f...............y...w...N |
| 0c20 | a9 00 29 04 da 02 2e 30 da 01 69 da 01 6a da 04 63 6f 6c 73 73 04 00 00 00 20 20 20 80 fa 62 2f | ..)....0..i..j..colss.........b/ |
| 0c40 | 68 6f 6d 65 2f 62 6c 61 63 6b 68 61 6f 2f 75 69 75 63 2d 63 6f 75 72 73 65 2d 67 72 61 70 68 2f | home/blackhao/uiuc-course-graph/ |
| 0c60 | 2e 76 65 6e 76 2f 6c 69 62 2f 70 79 74 68 6f 6e 33 2e 31 32 2f 73 69 74 65 2d 70 61 63 6b 61 67 | .venv/lib/python3.12/site-packag |
| 0c80 | 65 73 2f 6e 65 74 77 6f 72 6b 78 2f 67 65 6e 65 72 61 74 6f 72 73 2f 6c 61 74 74 69 63 65 2e 70 | es/networkx/generators/lattice.p |
| 0ca0 | 79 fa 09 3c 67 65 6e 65 78 70 72 3e 7a 20 67 72 69 64 5f 32 64 5f 67 72 61 70 68 2e 3c 6c 6f 63 | y..<genexpr>z.grid_2d_graph.<loc |
| 0cc0 | 61 6c 73 3e 2e 3c 67 65 6e 65 78 70 72 3e 42 00 00 00 73 21 00 00 00 f8 e8 00 f8 80 00 d2 14 38 | als>.<genexpr>B...s!...........8 |
| 0ce0 | a0 01 b0 34 d2 14 38 a8 61 90 61 98 11 94 56 d0 14 38 90 56 d1 14 38 f9 73 04 00 00 00 83 15 18 | ...4..8.a.a...V..8.V..8.s....... |
| 0d00 | 01 63 01 00 00 00 00 00 00 00 00 00 00 00 05 00 00 00 33 00 00 00 f3 42 00 00 00 95 01 4b 00 01 | .c................3....B.....K.. |
| 0d20 | 00 97 00 7c 00 5d 16 00 00 5c 02 00 00 7d 01 7d 02 89 04 44 00 5d 0c 00 00 7d 03 7c 02 7c 03 66 | ...|.]...\...}.}...D.]...}.|.|.f |
| 0d40 | 02 7c 01 7c 03 66 02 66 02 96 01 97 01 01 00 8c 0e 04 00 8c 18 04 00 79 00 ad 03 77 01 72 18 00 | .|.|.f.f...............y...w.r.. |
| 0d60 | 00 00 72 19 00 00 00 29 05 72 1a 00 00 00 da 02 70 69 72 1b 00 00 00 72 1c 00 00 00 72 1d 00 00 | ..r....).r......pir....r....r... |
| 0d80 | 00 73 05 00 00 00 20 20 20 20 80 72 1e 00 00 00 72 1f 00 00 00 7a 20 67 72 69 64 5f 32 64 5f 67 | .s.........r....r....z.grid_2d_g |
| 0da0 | 72 61 70 68 2e 3c 6c 6f 63 61 6c 73 3e 2e 3c 67 65 6e 65 78 70 72 3e 43 00 00 00 73 2f 00 00 00 | raph.<locals>.<genexpr>C...s/... |
| 0dc0 | f8 e8 00 f8 80 00 d2 14 51 a9 35 a8 32 a8 71 c8 44 d2 14 51 c0 71 90 71 98 21 90 66 98 72 a0 31 | ........Q.5.2.q.D..Q.q.q.!.f.r.1 |
| 0de0 | 98 67 d4 15 26 d0 14 51 d0 15 26 d1 14 51 f9 f3 04 00 00 00 83 1c 1f 01 63 01 00 00 00 00 00 00 | .g..&..Q..&..Q..........c....... |
| 0e00 | 00 00 00 00 00 05 00 00 00 33 00 00 00 f3 54 00 00 00 95 01 4b 00 01 00 97 00 7c 00 5d 1f 00 00 | .........3....T.....K.....|.]... |
| 0e20 | 7d 01 74 01 00 00 00 00 00 00 00 00 89 04 ab 01 00 00 00 00 00 00 44 00 5d 0f 00 00 5c 02 00 00 | }.t...................D.]...\... |
| 0e40 | 7d 02 7d 03 7c 01 7c 03 66 02 7c 01 7c 02 66 02 66 02 96 01 97 01 01 00 8c 11 04 00 8c 21 04 00 | }.}.|.|.f.|.|.f.f............!.. |
| 0e60 | 79 00 ad 03 77 01 72 18 00 00 00 29 01 72 0d 00 00 00 29 05 72 1a 00 00 00 72 1b 00 00 00 da 02 | y...w.r....).r....).r....r...... |
| 0e80 | 70 6a 72 1c 00 00 00 72 1d 00 00 00 73 05 00 00 00 20 20 20 20 80 72 1e 00 00 00 72 1f 00 00 00 | pjr....r....s.........r....r.... |
| 0ea0 | 7a 20 67 72 69 64 5f 32 64 5f 67 72 61 70 68 2e 3c 6c 6f 63 61 6c 73 3e 2e 3c 67 65 6e 65 78 70 | z.grid_2d_graph.<locals>.<genexp |
| 0ec0 | 72 3e 44 00 00 00 73 33 00 00 00 f8 e8 00 f8 80 00 d2 14 51 a8 31 c4 28 c8 34 c3 2e d2 14 51 b9 | r>D...s3...........Q.1.(.4....Q. |
| 0ee0 | 15 b8 12 b8 51 90 71 98 21 90 66 98 71 a0 22 98 67 d4 15 26 d0 14 51 d0 15 26 d1 14 51 f9 73 04 | ....Q.q.!.f.q.".g..&..Q..&..Q.s. |
| 0f00 | 00 00 00 83 25 28 01 e9 02 00 00 00 e9 ff ff ff ff 63 01 00 00 00 00 00 00 00 00 00 00 00 04 00 | ....%(...........c.............. |
| 0f20 | 00 00 33 00 00 00 f3 2e 00 00 00 95 02 4b 00 01 00 97 00 7c 00 5d 0c 00 00 7d 01 89 02 7c 01 66 | ..3..........K.....|.]...}...|.f |
| 0f40 | 02 89 03 7c 01 66 02 66 02 96 01 97 01 01 00 8c 0e 04 00 79 00 ad 03 77 01 72 18 00 00 00 72 19 | ...|.f.f...........y...w.r....r. |
| 0f60 | 00 00 00 29 04 72 1a 00 00 00 72 1c 00 00 00 da 05 66 69 72 73 74 da 04 6c 61 73 74 73 04 00 00 | ...).r....r......first..lasts... |
| 0f80 | 00 20 20 80 80 72 1e 00 00 00 72 1f 00 00 00 7a 20 67 72 69 64 5f 32 64 5f 67 72 61 70 68 2e 3c | .....r....r....z.grid_2d_graph.< |
| 0fa0 | 6c 6f 63 61 6c 73 3e 2e 3c 67 65 6e 65 78 70 72 3e 4e 00 00 00 73 1e 00 00 00 f8 e8 00 f8 80 00 | locals>.<genexpr>N...s.......... |
| 0fc0 | d2 18 3f b0 51 98 35 a0 21 98 2a a0 74 a8 51 a0 69 d4 19 30 d1 18 3f f9 f3 04 00 00 00 83 12 15 | ..?.Q.5.!.*.t.Q.i..0..?......... |
| 0fe0 | 01 63 01 00 00 00 00 00 00 00 00 00 00 00 04 00 00 00 33 00 00 00 f3 2e 00 00 00 95 02 4b 00 01 | .c................3..........K.. |
| 1000 | 00 97 00 7c 00 5d 0c 00 00 7d 01 7c 01 89 02 66 02 7c 01 89 03 66 02 66 02 96 01 97 01 01 00 8c | ...|.]...}.|...f.|...f.f........ |
| 1020 | 0e 04 00 79 00 ad 03 77 01 72 18 00 00 00 72 19 00 00 00 29 04 72 1a 00 00 00 72 1b 00 00 00 72 | ...y...w.r....r....).r....r....r |
| 1040 | 28 00 00 00 72 29 00 00 00 73 04 00 00 00 20 20 80 80 72 1e 00 00 00 72 1f 00 00 00 7a 20 67 72 | (...r)...s........r....r....z.gr |
| 1060 | 69 64 5f 32 64 5f 67 72 61 70 68 2e 3c 6c 6f 63 61 6c 73 3e 2e 3c 67 65 6e 65 78 70 72 3e 52 00 | id_2d_graph.<locals>.<genexpr>R. |
| 1080 | 00 00 73 1e 00 00 00 f8 e8 00 f8 80 00 d2 18 3f b0 51 98 31 98 65 98 2a a0 71 a8 24 a0 69 d4 19 | ..s............?.Q.1.e.*.q.$.i.. |
| 10a0 | 30 d1 18 3f f9 72 2a 00 00 00 63 01 00 00 00 00 00 00 00 00 00 00 00 03 00 00 00 33 00 00 00 f3 | 0..?.r*...c................3.... |
| 10c0 | 2a 00 00 00 4b 00 01 00 97 00 7c 00 5d 0b 00 00 5c 02 00 00 7d 01 7d 02 7c 02 7c 01 66 02 96 01 | *...K.....|.]...\...}.}.|.|.f... |
| 10e0 | 97 01 01 00 8c 0d 04 00 79 00 ad 03 77 01 72 18 00 00 00 72 19 00 00 00 29 03 72 1a 00 00 00 da | ........y...w.r....r....).r..... |
| 1100 | 01 75 da 01 76 73 03 00 00 00 20 20 20 72 1e 00 00 00 72 1f 00 00 00 7a 20 67 72 69 64 5f 32 64 | .u..vs.......r....r....z.grid_2d |
| 1120 | 5f 67 72 61 70 68 2e 3c 6c 6f 63 61 6c 73 3e 2e 3c 67 65 6e 65 78 70 72 3e 55 00 00 00 73 18 00 | _graph.<locals>.<genexpr>U...s.. |
| 1140 | 00 00 e8 00 f8 80 00 d2 18 36 a1 44 a0 41 a0 71 98 21 98 51 9c 16 d1 18 36 f9 73 04 00 00 00 82 | .........6.D.A.q.!.Q....6.s..... |
| 1160 | 11 13 01 29 08 72 08 00 00 00 da 0e 61 64 64 5f 6e 6f 64 65 73 5f 66 72 6f 6d da 0e 61 64 64 5f | ...).r......add_nodes_from..add_ |
| 1180 | 65 64 67 65 73 5f 66 72 6f 6d 72 0d 00 00 00 da 09 54 79 70 65 45 72 72 6f 72 da 03 6c 65 6e da | edges_fromr......TypeError..len. |
| 11a0 | 0b 69 73 5f 64 69 72 65 63 74 65 64 da 05 65 64 67 65 73 29 0d da 01 6d da 01 6e da 08 70 65 72 | .is_directed..edges)...m..n..per |
| 11c0 | 69 6f 64 69 63 da 0c 63 72 65 61 74 65 5f 75 73 69 6e 67 da 01 47 da 08 72 6f 77 5f 6e 61 6d 65 | iodic..create_using..G..row_name |
| 11e0 | da 04 72 6f 77 73 da 08 63 6f 6c 5f 6e 61 6d 65 da 0a 70 65 72 69 6f 64 69 63 5f 72 da 0a 70 65 | ..rows..col_name..periodic_r..pe |
| 1200 | 72 69 6f 64 69 63 5f 63 72 1d 00 00 00 72 28 00 00 00 72 29 00 00 00 73 0d 00 00 00 20 20 20 20 | riodic_cr....r(...r)...s........ |
| 1220 | 20 20 20 20 20 20 40 40 40 72 1e 00 00 00 72 0e 00 00 00 72 0e 00 00 00 23 00 00 00 73 1d 01 00 | ......@@@r....r....r....#...s... |
| 1240 | 00 fa 80 00 f4 38 00 09 14 90 41 90 7c d3 08 24 80 41 d8 15 16 81 4e 80 48 88 64 d8 15 16 81 4e | .....8....A.|..$.A....N.H.d....N |
| 1260 | 80 48 88 64 d8 04 05 d7 04 14 d1 04 14 d3 14 38 a0 54 d4 14 38 d4 04 38 d8 04 05 d7 04 14 d1 04 | .H.d...........8.T..8..8........ |
| 1280 | 14 d3 14 51 b4 48 b8 54 b3 4e d4 14 51 d4 04 51 d8 04 05 d7 04 14 d1 04 14 d3 14 51 b0 04 d4 14 | ...Q.H.T.N..Q..Q...........Q.... |
| 12a0 | 51 d4 04 51 f0 04 03 05 2b d8 21 29 d1 08 1e 88 0a 90 4a f1 08 00 08 12 94 63 98 24 93 69 a0 21 | Q..Q....+.!)......J......c.$.i.! |
| 12c0 | 92 6d d8 10 14 90 51 91 07 88 05 d8 0f 13 90 42 89 78 88 04 d8 08 09 d7 08 18 d1 08 18 d4 18 3f | .m....Q........B.x.............? |
| 12e0 | b8 24 d4 18 3f d4 08 3f d9 07 11 94 63 98 24 93 69 a0 21 92 6d d8 10 14 90 51 91 07 88 05 d8 0f | .$..?..?....c.$.i.!.m....Q...... |
| 1300 | 13 90 42 89 78 88 04 d8 08 09 d7 08 18 d1 08 18 d4 18 3f b8 24 d4 18 3f d4 08 3f e0 07 08 87 7d | ..B.x.............?.$..?..?....} |
| 1320 | 81 7d 84 7f d8 08 09 d7 08 18 d1 08 18 d1 18 36 a8 41 af 47 a9 47 ab 49 d4 18 36 d4 08 36 d8 0b | .}.............6.A.G.G.I..6..6.. |
| 1340 | 0c 80 48 f8 f4 1d 00 0c 15 f2 00 01 05 2b d8 22 2a d0 08 2a 88 0a 92 5a f0 03 01 05 2b fa 73 12 | ..H..........+."*..*...Z....+.s. |
| 1360 | 00 00 00 c1 32 05 44 19 00 c4 19 0d 44 29 03 c4 28 01 44 29 03 63 02 00 00 00 00 00 00 00 00 00 | ....2.D.....D)..(.D).c.......... |
| 1380 | 00 00 05 00 00 00 03 00 00 00 f3 1c 01 00 00 97 00 64 01 64 02 6c 00 6d 01 7d 02 01 00 7c 00 73 | .................d.d.l.m.}...|.s |
| 13a0 | 0b 74 05 00 00 00 00 00 00 00 00 64 01 ab 01 00 00 00 00 00 00 53 00 09 00 64 03 84 00 7c 01 44 | .t.........d.........S...d...|.D |
| 13c0 | 00 ab 00 00 00 00 00 00 00 7d 03 02 00 74 0f 00 00 00 00 00 00 00 00 7c 03 ab 01 00 00 00 00 00 | .........}...t.........|........ |
| 13e0 | 00 7c 00 64 01 19 00 00 00 ab 01 00 00 00 00 00 00 7d 04 7c 00 64 04 64 05 1a 00 44 00 5d 1c 00 | .|.d.............}.|.d.d...D.].. |
| 1400 | 00 7d 05 02 00 74 0f 00 00 00 00 00 00 00 00 7c 03 ab 01 00 00 00 00 00 00 7c 05 ab 01 00 00 00 | .}...t.........|.........|...... |
| 1420 | 00 00 00 7d 06 02 00 7c 02 7c 06 7c 04 ab 02 00 00 00 00 00 00 7d 04 8c 1e 04 00 74 11 00 00 00 | ...}...|.|.|.........}.....t.... |
| 1440 | 00 00 00 00 00 7c 04 74 12 00 00 00 00 00 00 00 00 ab 02 00 00 00 00 00 00 7d 07 7c 07 53 00 23 | .....|.t.................}.|.S.# |
| 1460 | 00 74 06 00 00 00 00 00 00 00 00 24 00 72 1a 01 00 74 09 00 00 00 00 00 00 00 00 7c 01 72 06 74 | .t.........$.r...t.........|.r.t |
| 1480 | 0a 00 00 00 00 00 00 00 00 6e 05 74 0c 00 00 00 00 00 00 00 00 ab 01 00 00 00 00 00 00 7d 03 59 | .........n.t.................}.Y |
| 14a0 | 00 8c 6c 77 00 78 03 59 00 77 01 29 06 61 96 04 00 00 52 65 74 75 72 6e 73 20 74 68 65 20 2a 6e | ..lw.x.Y.w.).a....Returns.the.*n |
| 14c0 | 2a 2d 64 69 6d 65 6e 73 69 6f 6e 61 6c 20 67 72 69 64 20 67 72 61 70 68 2e 0a 0a 20 20 20 20 54 | *-dimensional.grid.graph.......T |
| 14e0 | 68 65 20 64 69 6d 65 6e 73 69 6f 6e 20 2a 6e 2a 20 69 73 20 74 68 65 20 6c 65 6e 67 74 68 20 6f | he.dimension.*n*.is.the.length.o |
| 1500 | 66 20 74 68 65 20 6c 69 73 74 20 60 64 69 6d 60 20 61 6e 64 20 74 68 65 20 73 69 7a 65 20 69 6e | f.the.list.`dim`.and.the.size.in |
| 1520 | 0a 20 20 20 20 65 61 63 68 20 64 69 6d 65 6e 73 69 6f 6e 20 69 73 20 74 68 65 20 76 61 6c 75 65 | .....each.dimension.is.the.value |
| 1540 | 20 6f 66 20 74 68 65 20 63 6f 72 72 65 73 70 6f 6e 64 69 6e 67 20 6c 69 73 74 20 65 6c 65 6d 65 | .of.the.corresponding.list.eleme |
| 1560 | 6e 74 2e 0a 0a 20 20 20 20 50 61 72 61 6d 65 74 65 72 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d | nt.......Parameters.....-------- |
| 1580 | 2d 2d 0a 20 20 20 20 64 69 6d 20 3a 20 6c 69 73 74 20 6f 72 20 74 75 70 6c 65 20 6f 66 20 6e 75 | --.....dim.:.list.or.tuple.of.nu |
| 15a0 | 6d 62 65 72 73 20 6f 72 20 69 74 65 72 61 62 6c 65 73 20 6f 66 20 6e 6f 64 65 73 0a 20 20 20 20 | mbers.or.iterables.of.nodes..... |
| 15c0 | 20 20 20 20 27 64 69 6d 27 20 69 73 20 61 20 74 75 70 6c 65 20 6f 72 20 6c 69 73 74 20 77 69 74 | ....'dim'.is.a.tuple.or.list.wit |
| 15e0 | 68 2c 20 66 6f 72 20 65 61 63 68 20 64 69 6d 65 6e 73 69 6f 6e 2c 20 65 69 74 68 65 72 20 61 20 | h,.for.each.dimension,.either.a. |
| 1600 | 6e 75 6d 62 65 72 0a 20 20 20 20 20 20 20 20 74 68 61 74 20 69 73 20 74 68 65 20 73 69 7a 65 20 | number.........that.is.the.size. |
| 1620 | 6f 66 20 74 68 61 74 20 64 69 6d 65 6e 73 69 6f 6e 20 6f 72 20 61 6e 20 69 74 65 72 61 62 6c 65 | of.that.dimension.or.an.iterable |
| 1640 | 20 6f 66 20 6e 6f 64 65 73 20 66 6f 72 0a 20 20 20 20 20 20 20 20 74 68 61 74 20 64 69 6d 65 6e | .of.nodes.for.........that.dimen |
| 1660 | 73 69 6f 6e 2e 20 54 68 65 20 64 69 6d 65 6e 73 69 6f 6e 20 6f 66 20 74 68 65 20 67 72 69 64 5f | sion..The.dimension.of.the.grid_ |
| 1680 | 67 72 61 70 68 20 69 73 20 74 68 65 20 6c 65 6e 67 74 68 0a 20 20 20 20 20 20 20 20 6f 66 20 60 | graph.is.the.length.........of.` |
| 16a0 | 64 69 6d 60 2e 0a 0a 20 20 20 20 70 65 72 69 6f 64 69 63 20 3a 20 62 6f 6f 6c 20 6f 72 20 69 74 | dim`.......periodic.:.bool.or.it |
| 16c0 | 65 72 61 62 6c 65 0a 20 20 20 20 20 20 20 20 49 66 20 60 70 65 72 69 6f 64 69 63 60 20 69 73 20 | erable.........If.`periodic`.is. |
| 16e0 | 54 72 75 65 2c 20 61 6c 6c 20 64 69 6d 65 6e 73 69 6f 6e 73 20 61 72 65 20 70 65 72 69 6f 64 69 | True,.all.dimensions.are.periodi |
| 1700 | 63 2e 20 49 66 20 46 61 6c 73 65 20 61 6c 6c 0a 20 20 20 20 20 20 20 20 64 69 6d 65 6e 73 69 6f | c..If.False.all.........dimensio |
| 1720 | 6e 73 20 61 72 65 20 6e 6f 74 20 70 65 72 69 6f 64 69 63 2e 20 49 66 20 60 70 65 72 69 6f 64 69 | ns.are.not.periodic..If.`periodi |
| 1740 | 63 60 20 69 73 20 69 74 65 72 61 62 6c 65 2c 20 69 74 20 73 68 6f 75 6c 64 0a 20 20 20 20 20 20 | c`.is.iterable,.it.should....... |
| 1760 | 20 20 79 69 65 6c 64 20 60 64 69 6d 60 20 62 6f 6f 6c 20 76 61 6c 75 65 73 20 65 61 63 68 20 6f | ..yield.`dim`.bool.values.each.o |
| 1780 | 66 20 77 68 69 63 68 20 69 6e 64 69 63 61 74 65 73 20 77 68 65 74 68 65 72 20 74 68 65 0a 20 20 | f.which.indicates.whether.the... |
| 17a0 | 20 20 20 20 20 20 63 6f 72 72 65 73 70 6f 6e 64 69 6e 67 20 61 78 69 73 20 69 73 20 70 65 72 69 | ......corresponding.axis.is.peri |
| 17c0 | 6f 64 69 63 2e 0a 0a 20 20 20 20 52 65 74 75 72 6e 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 0a 20 | odic.......Returns.....-------.. |
| 17e0 | 20 20 20 4e 65 74 77 6f 72 6b 58 20 67 72 61 70 68 0a 20 20 20 20 20 20 20 20 54 68 65 20 28 70 | ...NetworkX.graph.........The.(p |
| 1800 | 6f 73 73 69 62 6c 79 20 70 65 72 69 6f 64 69 63 29 20 67 72 69 64 20 67 72 61 70 68 20 6f 66 20 | ossibly.periodic).grid.graph.of. |
| 1820 | 74 68 65 20 73 70 65 63 69 66 69 65 64 20 64 69 6d 65 6e 73 69 6f 6e 73 2e 0a 0a 20 20 20 20 45 | the.specified.dimensions.......E |
| 1840 | 78 61 6d 70 6c 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 54 6f 20 70 72 6f 64 | xamples.....--------.....To.prod |
| 1860 | 75 63 65 20 61 20 32 20 62 79 20 33 20 62 79 20 34 20 67 72 69 64 20 67 72 61 70 68 2c 20 61 20 | uce.a.2.by.3.by.4.grid.graph,.a. |
| 1880 | 67 72 61 70 68 20 6f 6e 20 32 34 20 6e 6f 64 65 73 3a 0a 0a 20 20 20 20 3e 3e 3e 20 66 72 6f 6d | graph.on.24.nodes:......>>>.from |
| 18a0 | 20 6e 65 74 77 6f 72 6b 78 20 69 6d 70 6f 72 74 20 67 72 69 64 5f 67 72 61 70 68 0a 20 20 20 20 | .networkx.import.grid_graph..... |
| 18c0 | 3e 3e 3e 20 47 20 3d 20 67 72 69 64 5f 67 72 61 70 68 28 64 69 6d 3d 28 32 2c 20 33 2c 20 34 29 | >>>.G.=.grid_graph(dim=(2,.3,.4) |
| 18e0 | 29 0a 20 20 20 20 3e 3e 3e 20 6c 65 6e 28 47 29 0a 20 20 20 20 32 34 0a 20 20 20 20 3e 3e 3e 20 | ).....>>>.len(G).....24.....>>>. |
| 1900 | 47 20 3d 20 67 72 69 64 5f 67 72 61 70 68 28 64 69 6d 3d 28 72 61 6e 67 65 28 37 2c 20 39 29 2c | G.=.grid_graph(dim=(range(7,.9), |
| 1920 | 20 72 61 6e 67 65 28 33 2c 20 36 29 29 29 0a 20 20 20 20 3e 3e 3e 20 6c 65 6e 28 47 29 0a 20 20 | .range(3,.6))).....>>>.len(G)... |
| 1940 | 20 20 36 0a 20 20 20 20 72 02 00 00 00 29 01 da 11 63 61 72 74 65 73 69 61 6e 5f 70 72 6f 64 75 | ..6.....r....)...cartesian_produ |
| 1960 | 63 74 63 01 00 00 00 00 00 00 00 00 00 00 00 02 00 00 00 33 00 00 00 f3 38 00 00 00 4b 00 01 00 | ctc................3....8...K... |
| 1980 | 97 00 7c 00 5d 12 00 00 7d 01 7c 01 72 06 74 00 00 00 00 00 00 00 00 00 6e 05 74 02 00 00 00 00 | ..|.]...}.|.r.t.........n.t..... |
| 19a0 | 00 00 00 00 96 01 97 01 01 00 8c 14 04 00 79 00 ad 03 77 01 72 18 00 00 00 29 02 72 07 00 00 00 | ..............y...w.r....).r.... |
| 19c0 | 72 09 00 00 00 29 02 72 1a 00 00 00 da 01 70 73 02 00 00 00 20 20 72 1e 00 00 00 72 1f 00 00 00 | r....).r......ps......r....r.... |
| 19e0 | 7a 1d 67 72 69 64 5f 67 72 61 70 68 2e 3c 6c 6f 63 61 6c 73 3e 2e 3c 67 65 6e 65 78 70 72 3e 85 | z.grid_graph.<locals>.<genexpr>. |
| 1a00 | 00 00 00 73 17 00 00 00 e8 00 f8 80 00 d2 0f 43 b0 51 99 71 95 0b a4 6a d3 10 30 d1 0f 43 f9 73 | ...s...........C.Q.q...j..0..C.s |
| 1a20 | 04 00 00 00 82 18 1a 01 72 15 00 00 00 4e 29 0a da 25 6e 65 74 77 6f 72 6b 78 2e 61 6c 67 6f 72 | ........r....N)..%networkx.algor |
| 1a40 | 69 74 68 6d 73 2e 6f 70 65 72 61 74 6f 72 73 2e 70 72 6f 64 75 63 74 72 40 00 00 00 72 08 00 00 | ithms.operators.productr@...r... |
| 1a60 | 00 72 31 00 00 00 72 03 00 00 00 72 07 00 00 00 72 09 00 00 00 da 04 6e 65 78 74 72 0a 00 00 00 | .r1...r....r....r......nextr.... |
| 1a80 | 72 0b 00 00 00 29 08 da 03 64 69 6d 72 37 00 00 00 72 40 00 00 00 da 04 66 75 6e 63 72 39 00 00 | r....)...dimr7...r@.....funcr9.. |
| 1aa0 | 00 da 0b 63 75 72 72 65 6e 74 5f 64 69 6d da 04 47 6e 65 77 da 01 48 73 08 00 00 00 20 20 20 20 | ...current_dim..Gnew..Hs........ |
| 1ac0 | 20 20 20 20 72 1e 00 00 00 72 0f 00 00 00 72 0f 00 00 00 59 00 00 00 73 9e 00 00 00 80 00 f5 4c | ....r....r....r....Y...s.......L |
| 1ae0 | 01 00 05 48 01 e1 0b 0e dc 0f 1a 98 31 8b 7e d0 08 1d f0 04 03 05 3f d9 0f 43 b8 28 d4 0f 43 88 | ...H........1.~.......?..C.(..C. |
| 1b00 | 04 f0 08 00 09 13 8c 04 88 54 8b 0a 90 33 90 71 91 36 d3 08 1a 80 41 d8 17 1a 98 31 98 32 90 77 | .........T...3.q.6....A....1.2.w |
| 1b20 | f2 00 02 05 27 88 0b d8 0f 19 8c 74 90 44 8b 7a 98 2b d3 0f 26 88 04 d9 0c 1d 98 64 a0 41 d3 0c | ....'......t.D.z.+..&......d.A.. |
| 1b40 | 26 89 01 f0 05 02 05 27 f4 08 00 09 16 90 61 9c 17 d3 08 21 80 41 d8 0b 0c 80 48 f8 f4 13 00 0c | &......'......a....!.A....H..... |
| 1b60 | 15 f2 00 01 05 3f dc 0f 15 a1 58 95 6b b4 3a d3 0f 3e 8a 04 f0 03 01 05 3f fa 73 11 00 00 00 95 | .....?....X.k.:..>......?.s..... |
| 1b80 | 09 41 28 00 c1 28 20 42 0b 03 c2 0a 01 42 0b 03 63 01 00 00 00 00 00 00 00 00 00 00 00 03 00 00 | .A(..(.B.....B..c............... |
| 1ba0 | 00 03 00 00 00 f3 28 00 00 00 97 00 7c 00 64 01 67 01 7a 05 00 00 7d 01 74 01 00 00 00 00 00 00 | ......(.....|.d.g.z...}.t....... |
| 1bc0 | 00 00 7c 01 ab 01 00 00 00 00 00 00 7d 02 7c 02 53 00 29 02 61 10 02 00 00 52 65 74 75 72 6e 73 | ..|.........}.|.S.).a....Returns |
| 1be0 | 20 74 68 65 20 2a 6e 2a 2d 64 69 6d 65 6e 73 69 6f 6e 61 6c 20 68 79 70 65 72 63 75 62 65 20 67 | .the.*n*-dimensional.hypercube.g |
| 1c00 | 72 61 70 68 2e 0a 0a 20 20 20 20 54 68 65 20 6e 6f 64 65 73 20 61 72 65 20 74 68 65 20 69 6e 74 | raph.......The.nodes.are.the.int |
| 1c20 | 65 67 65 72 73 20 62 65 74 77 65 65 6e 20 30 20 61 6e 64 20 60 60 32 20 2a 2a 20 6e 20 2d 20 31 | egers.between.0.and.``2.**.n.-.1 |
| 1c40 | 60 60 2c 20 69 6e 63 6c 75 73 69 76 65 2e 0a 0a 20 20 20 20 46 6f 72 20 6d 6f 72 65 20 69 6e 66 | ``,.inclusive.......For.more.inf |
| 1c60 | 6f 72 6d 61 74 69 6f 6e 20 6f 6e 20 74 68 65 20 68 79 70 65 72 63 75 62 65 20 67 72 61 70 68 2c | ormation.on.the.hypercube.graph, |
| 1c80 | 20 73 65 65 20 74 68 65 20 57 69 6b 69 70 65 64 69 61 0a 20 20 20 20 61 72 74 69 63 6c 65 20 60 | .see.the.Wikipedia.....article.` |
| 1ca0 | 48 79 70 65 72 63 75 62 65 20 67 72 61 70 68 60 5f 2e 0a 0a 20 20 20 20 2e 2e 20 5f 48 79 70 65 | Hypercube.graph`_.........._Hype |
| 1cc0 | 72 63 75 62 65 20 67 72 61 70 68 3a 20 68 74 74 70 73 3a 2f 2f 65 6e 2e 77 69 6b 69 70 65 64 69 | rcube.graph:.https://en.wikipedi |
| 1ce0 | 61 2e 6f 72 67 2f 77 69 6b 69 2f 48 79 70 65 72 63 75 62 65 5f 67 72 61 70 68 0a 0a 20 20 20 20 | a.org/wiki/Hypercube_graph...... |
| 1d00 | 50 61 72 61 6d 65 74 65 72 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 6e 20 | Parameters.....----------.....n. |
| 1d20 | 3a 20 69 6e 74 0a 20 20 20 20 20 20 20 20 54 68 65 20 64 69 6d 65 6e 73 69 6f 6e 20 6f 66 20 74 | :.int.........The.dimension.of.t |
| 1d40 | 68 65 20 68 79 70 65 72 63 75 62 65 2e 0a 20 20 20 20 20 20 20 20 54 68 65 20 6e 75 6d 62 65 72 | he.hypercube..........The.number |
| 1d60 | 20 6f 66 20 6e 6f 64 65 73 20 69 6e 20 74 68 65 20 67 72 61 70 68 20 77 69 6c 6c 20 62 65 20 60 | .of.nodes.in.the.graph.will.be.` |
| 1d80 | 60 32 20 2a 2a 20 6e 60 60 2e 0a 0a 20 20 20 20 52 65 74 75 72 6e 73 0a 20 20 20 20 2d 2d 2d 2d | `2.**.n``.......Returns.....---- |
| 1da0 | 2d 2d 2d 0a 20 20 20 20 4e 65 74 77 6f 72 6b 58 20 67 72 61 70 68 0a 20 20 20 20 20 20 20 20 54 | ---.....NetworkX.graph.........T |
| 1dc0 | 68 65 20 68 79 70 65 72 63 75 62 65 20 67 72 61 70 68 20 6f 66 20 64 69 6d 65 6e 73 69 6f 6e 20 | he.hypercube.graph.of.dimension. |
| 1de0 | 2a 6e 2a 2e 0a 20 20 20 20 72 25 00 00 00 29 01 72 0f 00 00 00 29 03 72 36 00 00 00 72 45 00 00 | *n*......r%...).r....).r6...rE.. |
| 1e00 | 00 72 39 00 00 00 73 03 00 00 00 20 20 20 72 1e 00 00 00 72 10 00 00 00 72 10 00 00 00 92 00 00 | .r9...s.......r....r....r....... |
| 1e20 | 00 73 1d 00 00 00 80 00 f0 2c 00 0b 0c 88 71 88 63 89 27 80 43 dc 08 12 90 33 8b 0f 80 41 d8 0b | .s.......,....q.c.'.C....3...A.. |
| 1e40 | 0c 80 48 f3 00 00 00 00 63 05 00 00 00 00 00 00 00 00 00 00 00 0a 00 00 00 03 00 00 00 f3 98 03 | ..H.....c....................... |
| 1e60 | 00 00 87 11 87 12 87 13 87 14 97 00 74 01 00 00 00 00 00 00 00 00 64 01 7c 04 ab 02 00 00 00 00 | ............t.........d.|....... |
| 1e80 | 00 00 7d 05 7c 01 64 01 6b 28 00 00 73 05 7c 00 64 01 6b 28 00 00 72 02 7c 05 53 00 7c 02 72 1d | ..}.|.d.k(..s.|.d.k(..r.|.S.|.r. |
| 1ea0 | 7c 01 64 02 6b 02 00 00 73 05 7c 00 64 03 6b 02 00 00 72 13 64 04 7c 00 9b 00 64 05 7c 01 9b 00 | |.d.k...s.|.d.k...r.d.|...d.|... |
| 1ec0 | 9d 04 7d 06 74 03 00 00 00 00 00 00 00 00 7c 06 ab 01 00 00 00 00 00 00 82 01 7c 01 64 06 7a 00 | ..}.t.........|...........|.d.z. |
| 1ee0 | 00 00 64 07 7a 02 00 00 8a 11 74 05 00 00 00 00 00 00 00 00 7c 00 64 06 7a 00 00 00 ab 01 00 00 | ..d.z.....t.........|.d.z....... |
| 1f00 | 00 00 00 00 8a 14 74 05 00 00 00 00 00 00 00 00 89 11 64 06 7a 00 00 00 ab 01 00 00 00 00 00 00 | ......t...........d.z........... |
| 1f20 | 8a 12 7c 05 6a 07 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 88 11 88 12 66 02 64 08 | ..|.j.......................f.d. |
| 1f40 | 84 08 89 14 44 00 ab 00 00 00 00 00 00 00 ab 01 00 00 00 00 00 00 01 00 7c 05 6a 07 00 00 00 00 | ....D...................|.j..... |
| 1f60 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 88 12 66 01 64 09 84 08 89 14 64 0a 7c 00 1a 00 44 00 | ................f.d.....d.|...D. |
| 1f80 | ab 00 00 00 00 00 00 00 ab 01 00 00 00 00 00 00 01 00 7c 05 6a 07 00 00 00 00 00 00 00 00 00 00 | ..................|.j........... |
| 1fa0 | 00 00 00 00 00 00 00 00 88 11 88 12 66 02 64 0b 84 08 89 14 64 06 7c 00 64 07 85 03 19 00 00 00 | ............f.d.....d.|.d....... |
| 1fc0 | 44 00 ab 00 00 00 00 00 00 00 ab 01 00 00 00 00 00 00 01 00 7c 05 6a 07 00 00 00 00 00 00 00 00 | D...................|.j......... |
| 1fe0 | 00 00 00 00 00 00 00 00 00 00 88 11 88 12 66 02 64 0c 84 08 89 14 64 0a 7c 00 64 07 85 03 19 00 | ..............f.d.....d.|.d..... |
| 2000 | 00 00 44 00 ab 00 00 00 00 00 00 00 ab 01 00 00 00 00 00 00 01 00 64 01 64 0d 6c 04 6d 05 7d 07 | ..D...................d.d.l.m.}. |
| 2020 | 01 00 7c 02 64 0e 75 00 72 2e 89 12 44 00 5d 10 00 00 7d 08 02 00 7c 07 7c 05 7c 08 64 01 66 02 | ..|.d.u.r...D.]...}...|.|.|.d.f. |
| 2040 | 7c 08 7c 00 66 02 ab 03 00 00 00 00 00 00 7d 05 8c 12 04 00 89 14 64 0a 7c 00 1a 00 44 00 5d 10 | |.|.f.........}.......d.|...D.]. |
| 2060 | 00 00 7d 09 02 00 7c 07 7c 05 64 01 7c 09 66 02 89 11 7c 09 66 02 ab 03 00 00 00 00 00 00 7d 05 | ..}...|.|.d.|.f...|.f.........}. |
| 2080 | 8c 12 04 00 6e 25 7c 01 64 07 7a 06 00 00 72 20 7c 05 6a 0d 00 00 00 00 00 00 00 00 00 00 00 00 | ....n%|.d.z...r.|.j............. |
| 20a0 | 00 00 00 00 00 00 88 11 66 01 64 0f 84 08 89 14 64 06 64 0a 64 07 85 03 19 00 00 00 44 00 ab 00 | ........f.d.....d.d.d.......D... |
| 20c0 | 00 00 00 00 00 00 ab 01 00 00 00 00 00 00 01 00 7c 03 72 89 88 14 66 01 64 10 84 08 89 12 44 00 | ................|.r...f.d.....D. |
| 20e0 | ab 00 00 00 00 00 00 00 7d 0a 88 14 66 01 64 11 84 08 89 12 44 00 ab 00 00 00 00 00 00 00 7d 0b | ........}...f.d.....D.........}. |
| 2100 | 88 14 66 01 64 12 84 08 89 12 44 00 ab 00 00 00 00 00 00 00 7d 0c 74 0f 00 00 00 00 00 00 00 00 | ..f.d.....D.........}.t......... |
| 2120 | 64 03 ab 01 00 00 00 00 00 00 64 07 7a 0b 00 00 8a 13 7c 02 72 0d 88 13 88 14 66 02 64 13 84 08 | d.........d.z.....|.r.....f.d... |
| 2140 | 89 12 44 00 ab 00 00 00 00 00 00 00 7d 0d 6e 0c 88 13 88 14 66 02 64 14 84 08 89 12 44 00 ab 00 | ..D.........}.n.....f.d.....D... |
| 2160 | 00 00 00 00 00 00 7d 0d 74 11 00 00 00 00 00 00 00 00 7c 0a 7c 0b 7c 0c 7c 0d ab 04 00 00 00 00 | ......}.t.........|.|.|.|....... |
| 2180 | 00 00 44 00 8f 08 8f 09 8f 0e 8f 0f 63 05 69 00 63 02 5d 15 00 00 5c 04 00 00 7d 08 7d 09 7d 0e | ..D.........c.i.c.]...\...}.}.}. |
| 21a0 | 7d 0f 7c 08 7c 09 66 02 7c 05 76 00 73 01 8c 0f 7c 08 7c 09 66 02 7c 0e 7c 0f 66 02 93 02 8c 17 | }.|.|.f.|.v.s...|.|.f.|.|.f..... |
| 21c0 | 04 00 7d 10 7d 0e 7d 09 7d 08 7d 0f 74 13 00 00 00 00 00 00 00 00 7c 05 7c 10 64 15 ab 03 00 00 | ..}.}.}.}.}.t.........|.|.d..... |
| 21e0 | 00 00 00 00 01 00 7c 05 53 00 63 02 01 00 63 05 7d 0f 7d 0e 7d 09 7d 08 77 00 29 16 61 6b 09 00 | ......|.S.c...c.}.}.}.}.w.).ak.. |
| 2200 | 00 52 65 74 75 72 6e 73 20 74 68 65 20 24 6d 24 20 62 79 20 24 6e 24 20 74 72 69 61 6e 67 75 6c | .Returns.the.$m$.by.$n$.triangul |
| 2220 | 61 72 20 6c 61 74 74 69 63 65 20 67 72 61 70 68 2e 0a 0a 20 20 20 20 54 68 65 20 60 74 72 69 61 | ar.lattice.graph.......The.`tria |
| 2240 | 6e 67 75 6c 61 72 20 6c 61 74 74 69 63 65 20 67 72 61 70 68 60 5f 20 69 73 20 61 20 74 77 6f 2d | ngular.lattice.graph`_.is.a.two- |
| 2260 | 64 69 6d 65 6e 73 69 6f 6e 61 6c 20 60 67 72 69 64 20 67 72 61 70 68 60 5f 20 69 6e 0a 20 20 20 | dimensional.`grid.graph`_.in.... |
| 2280 | 20 77 68 69 63 68 20 65 61 63 68 20 73 71 75 61 72 65 20 75 6e 69 74 20 68 61 73 20 61 20 64 69 | .which.each.square.unit.has.a.di |
| 22a0 | 61 67 6f 6e 61 6c 20 65 64 67 65 20 28 65 61 63 68 20 67 72 69 64 20 75 6e 69 74 20 68 61 73 20 | agonal.edge.(each.grid.unit.has. |
| 22c0 | 61 20 63 68 6f 72 64 29 2e 0a 0a 20 20 20 20 54 68 65 20 72 65 74 75 72 6e 65 64 20 67 72 61 70 | a.chord).......The.returned.grap |
| 22e0 | 68 20 68 61 73 20 24 6d 24 20 72 6f 77 73 20 61 6e 64 20 24 6e 24 20 63 6f 6c 75 6d 6e 73 20 6f | h.has.$m$.rows.and.$n$.columns.o |
| 2300 | 66 20 74 72 69 61 6e 67 6c 65 73 2e 20 52 6f 77 73 20 61 6e 64 0a 20 20 20 20 63 6f 6c 75 6d 6e | f.triangles..Rows.and.....column |
| 2320 | 73 20 69 6e 63 6c 75 64 65 20 62 6f 74 68 20 74 72 69 61 6e 67 6c 65 73 20 70 6f 69 6e 74 69 6e | s.include.both.triangles.pointin |
| 2340 | 67 20 75 70 20 61 6e 64 20 64 6f 77 6e 2e 20 52 6f 77 73 20 66 6f 72 6d 20 61 20 73 74 72 69 70 | g.up.and.down..Rows.form.a.strip |
| 2360 | 0a 20 20 20 20 6f 66 20 63 6f 6e 73 74 61 6e 74 20 68 65 69 67 68 74 2e 20 43 6f 6c 75 6d 6e 73 | .....of.constant.height..Columns |
| 2380 | 20 66 6f 72 6d 20 61 20 73 65 72 69 65 73 20 6f 66 20 64 69 61 6d 6f 6e 64 20 73 68 61 70 65 73 | .form.a.series.of.diamond.shapes |
| 23a0 | 2c 20 73 74 61 67 67 65 72 65 64 0a 20 20 20 20 77 69 74 68 20 74 68 65 20 63 6f 6c 75 6d 6e 73 | ,.staggered.....with.the.columns |
| 23c0 | 20 6f 6e 20 65 69 74 68 65 72 20 73 69 64 65 2e 20 41 6e 6f 74 68 65 72 20 77 61 79 20 74 6f 20 | .on.either.side..Another.way.to. |
| 23e0 | 73 74 61 74 65 20 74 68 65 20 73 69 7a 65 20 69 73 20 74 68 61 74 0a 20 20 20 20 74 68 65 20 6e | state.the.size.is.that.....the.n |
| 2400 | 6f 64 65 73 20 66 6f 72 6d 20 61 20 67 72 69 64 20 6f 66 20 60 6d 2b 31 60 20 72 6f 77 73 20 61 | odes.form.a.grid.of.`m+1`.rows.a |
| 2420 | 6e 64 20 60 28 6e 20 2b 20 31 29 20 2f 2f 20 32 60 20 63 6f 6c 75 6d 6e 73 2e 0a 20 20 20 20 54 | nd.`(n.+.1).//.2`.columns......T |
| 2440 | 68 65 20 6f 64 64 20 72 6f 77 20 6e 6f 64 65 73 20 61 72 65 20 73 68 69 66 74 65 64 20 68 6f 72 | he.odd.row.nodes.are.shifted.hor |
| 2460 | 69 7a 6f 6e 74 61 6c 6c 79 20 72 65 6c 61 74 69 76 65 20 74 6f 20 74 68 65 20 65 76 65 6e 20 72 | izontally.relative.to.the.even.r |
| 2480 | 6f 77 73 2e 0a 0a 20 20 20 20 44 69 72 65 63 74 65 64 20 67 72 61 70 68 20 74 79 70 65 73 20 68 | ows.......Directed.graph.types.h |
| 24a0 | 61 76 65 20 65 64 67 65 73 20 70 6f 69 6e 74 65 64 20 75 70 20 6f 72 20 72 69 67 68 74 2e 0a 0a | ave.edges.pointed.up.or.right... |
| 24c0 | 20 20 20 20 50 6f 73 69 74 69 6f 6e 73 20 6f 66 20 6e 6f 64 65 73 20 61 72 65 20 63 6f 6d 70 75 | ....Positions.of.nodes.are.compu |
| 24e0 | 74 65 64 20 62 79 20 64 65 66 61 75 6c 74 20 6f 72 20 60 77 69 74 68 5f 70 6f 73 69 74 69 6f 6e | ted.by.default.or.`with_position |
| 2500 | 73 20 69 73 20 54 72 75 65 60 2e 0a 20 20 20 20 54 68 65 20 70 6f 73 69 74 69 6f 6e 20 6f 66 20 | s.is.True`......The.position.of. |
| 2520 | 65 61 63 68 20 6e 6f 64 65 20 28 65 6d 62 65 64 64 65 64 20 69 6e 20 61 20 65 75 63 6c 69 64 65 | each.node.(embedded.in.a.euclide |
| 2540 | 61 6e 20 70 6c 61 6e 65 29 20 69 73 20 73 74 6f 72 65 64 20 69 6e 0a 20 20 20 20 74 68 65 20 67 | an.plane).is.stored.in.....the.g |
| 2560 | 72 61 70 68 20 75 73 69 6e 67 20 65 71 75 69 6c 61 74 65 72 61 6c 20 74 72 69 61 6e 67 6c 65 73 | raph.using.equilateral.triangles |
| 2580 | 20 77 69 74 68 20 73 69 64 65 6c 65 6e 67 74 68 20 31 2e 0a 20 20 20 20 54 68 65 20 68 65 69 67 | .with.sidelength.1......The.heig |
| 25a0 | 68 74 20 62 65 74 77 65 65 6e 20 72 6f 77 73 20 6f 66 20 6e 6f 64 65 73 20 69 73 20 74 68 75 73 | ht.between.rows.of.nodes.is.thus |
| 25c0 | 20 24 5c 73 71 72 74 28 33 29 2f 32 24 2e 0a 20 20 20 20 4e 6f 64 65 73 20 6c 69 65 20 69 6e 20 | .$\sqrt(3)/2$......Nodes.lie.in. |
| 25e0 | 74 68 65 20 66 69 72 73 74 20 71 75 61 64 72 61 6e 74 20 77 69 74 68 20 74 68 65 20 6e 6f 64 65 | the.first.quadrant.with.the.node |
| 2600 | 20 24 28 30 2c 20 30 29 24 20 61 74 20 74 68 65 20 6f 72 69 67 69 6e 2e 0a 0a 20 20 20 20 2e 2e | .$(0,.0)$.at.the.origin......... |
| 2620 | 20 5f 74 72 69 61 6e 67 75 6c 61 72 20 6c 61 74 74 69 63 65 20 67 72 61 70 68 3a 20 68 74 74 70 | ._triangular.lattice.graph:.http |
| 2640 | 3a 2f 2f 6d 61 74 68 77 6f 72 6c 64 2e 77 6f 6c 66 72 61 6d 2e 63 6f 6d 2f 54 72 69 61 6e 67 75 | ://mathworld.wolfram.com/Triangu |
| 2660 | 6c 61 72 47 72 69 64 2e 68 74 6d 6c 0a 20 20 20 20 2e 2e 20 5f 67 72 69 64 20 67 72 61 70 68 3a | larGrid.html........_grid.graph: |
| 2680 | 20 68 74 74 70 3a 2f 2f 77 77 77 2d 63 73 2d 73 74 75 64 65 6e 74 73 2e 73 74 61 6e 66 6f 72 64 | .http://www-cs-students.stanford |
| 26a0 | 2e 65 64 75 2f 7e 61 6d 69 74 70 2f 67 61 6d 65 2d 70 72 6f 67 72 61 6d 6d 69 6e 67 2f 67 72 69 | .edu/~amitp/game-programming/gri |
| 26c0 | 64 73 2f 0a 20 20 20 20 2e 2e 20 5f 54 72 69 61 6e 67 75 6c 61 72 20 54 69 6c 69 6e 67 3a 20 68 | ds/........_Triangular.Tiling:.h |
| 26e0 | 74 74 70 73 3a 2f 2f 65 6e 2e 77 69 6b 69 70 65 64 69 61 2e 6f 72 67 2f 77 69 6b 69 2f 54 72 69 | ttps://en.wikipedia.org/wiki/Tri |
| 2700 | 61 6e 67 75 6c 61 72 5f 74 69 6c 69 6e 67 0a 0a 20 20 20 20 50 61 72 61 6d 65 74 65 72 73 0a 20 | angular_tiling......Parameters.. |
| 2720 | 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 6d 20 3a 20 69 6e 74 0a 20 20 20 20 20 20 | ...----------.....m.:.int....... |
| 2740 | 20 20 54 68 65 20 6e 75 6d 62 65 72 20 6f 66 20 72 6f 77 73 20 69 6e 20 74 68 65 20 6c 61 74 74 | ..The.number.of.rows.in.the.latt |
| 2760 | 69 63 65 2e 0a 0a 20 20 20 20 6e 20 3a 20 69 6e 74 0a 20 20 20 20 20 20 20 20 54 68 65 20 6e 75 | ice.......n.:.int.........The.nu |
| 2780 | 6d 62 65 72 20 6f 66 20 63 6f 6c 75 6d 6e 73 20 69 6e 20 74 68 65 20 6c 61 74 74 69 63 65 2e 0a | mber.of.columns.in.the.lattice.. |
| 27a0 | 0a 20 20 20 20 70 65 72 69 6f 64 69 63 20 3a 20 62 6f 6f 6c 20 28 64 65 66 61 75 6c 74 3a 20 46 | .....periodic.:.bool.(default:.F |
| 27c0 | 61 6c 73 65 29 0a 20 20 20 20 20 20 20 20 49 66 20 54 72 75 65 2c 20 6a 6f 69 6e 20 74 68 65 20 | alse).........If.True,.join.the. |
| 27e0 | 62 6f 75 6e 64 61 72 79 20 76 65 72 74 69 63 65 73 20 6f 66 20 74 68 65 20 67 72 69 64 20 75 73 | boundary.vertices.of.the.grid.us |
| 2800 | 69 6e 67 20 70 65 72 69 6f 64 69 63 0a 20 20 20 20 20 20 20 20 62 6f 75 6e 64 61 72 79 20 63 6f | ing.periodic.........boundary.co |
| 2820 | 6e 64 69 74 69 6f 6e 73 2e 20 54 68 65 20 6a 6f 69 6e 20 62 65 74 77 65 65 6e 20 62 6f 75 6e 64 | nditions..The.join.between.bound |
| 2840 | 61 72 69 65 73 20 69 73 20 74 68 65 20 66 69 6e 61 6c 20 72 6f 77 0a 20 20 20 20 20 20 20 20 61 | aries.is.the.final.row.........a |
| 2860 | 6e 64 20 63 6f 6c 75 6d 6e 20 6f 66 20 74 72 69 61 6e 67 6c 65 73 2e 20 54 68 69 73 20 6d 65 61 | nd.column.of.triangles..This.mea |
| 2880 | 6e 73 20 74 68 65 72 65 20 69 73 20 6f 6e 65 20 72 6f 77 20 61 6e 64 20 6f 6e 65 20 63 6f 6c 75 | ns.there.is.one.row.and.one.colu |
| 28a0 | 6d 6e 0a 20 20 20 20 20 20 20 20 66 65 77 65 72 20 6e 6f 64 65 73 20 66 6f 72 20 74 68 65 20 70 | mn.........fewer.nodes.for.the.p |
| 28c0 | 65 72 69 6f 64 69 63 20 6c 61 74 74 69 63 65 2e 20 50 65 72 69 6f 64 69 63 20 6c 61 74 74 69 63 | eriodic.lattice..Periodic.lattic |
| 28e0 | 65 73 20 72 65 71 75 69 72 65 0a 20 20 20 20 20 20 20 20 60 6d 20 3e 3d 20 33 60 2c 20 60 6e 20 | es.require.........`m.>=.3`,.`n. |
| 2900 | 3e 3d 20 35 60 20 61 6e 64 20 61 72 65 20 61 6c 6c 6f 77 65 64 20 62 75 74 20 6d 69 73 61 6c 69 | >=.5`.and.are.allowed.but.misali |
| 2920 | 67 6e 65 64 20 69 66 20 60 6d 60 20 6f 72 20 60 6e 60 20 61 72 65 20 6f 64 64 0a 0a 20 20 20 20 | gned.if.`m`.or.`n`.are.odd...... |
| 2940 | 77 69 74 68 5f 70 6f 73 69 74 69 6f 6e 73 20 3a 20 62 6f 6f 6c 20 28 64 65 66 61 75 6c 74 3a 20 | with_positions.:.bool.(default:. |
| 2960 | 54 72 75 65 29 0a 20 20 20 20 20 20 20 20 53 74 6f 72 65 20 74 68 65 20 63 6f 6f 72 64 69 6e 61 | True).........Store.the.coordina |
| 2980 | 74 65 73 20 6f 66 20 65 61 63 68 20 6e 6f 64 65 20 69 6e 20 74 68 65 20 67 72 61 70 68 20 6e 6f | tes.of.each.node.in.the.graph.no |
| 29a0 | 64 65 20 61 74 74 72 69 62 75 74 65 20 27 70 6f 73 27 2e 0a 20 20 20 20 20 20 20 20 54 68 65 20 | de.attribute.'pos'..........The. |
| 29c0 | 63 6f 6f 72 64 69 6e 61 74 65 73 20 70 72 6f 76 69 64 65 20 61 20 6c 61 74 74 69 63 65 20 77 69 | coordinates.provide.a.lattice.wi |
| 29e0 | 74 68 20 65 71 75 69 6c 61 74 65 72 61 6c 20 74 72 69 61 6e 67 6c 65 73 2e 0a 20 20 20 20 20 20 | th.equilateral.triangles........ |
| 2a00 | 20 20 50 65 72 69 6f 64 69 63 20 70 6f 73 69 74 69 6f 6e 73 20 73 68 69 66 74 20 74 68 65 20 6e | ..Periodic.positions.shift.the.n |
| 2a20 | 6f 64 65 73 20 76 65 72 74 69 63 61 6c 6c 79 20 69 6e 20 61 20 6e 6f 6e 6c 69 6e 65 61 72 20 77 | odes.vertically.in.a.nonlinear.w |
| 2a40 | 61 79 20 73 6f 0a 20 20 20 20 20 20 20 20 74 68 65 20 65 64 67 65 73 20 64 6f 6e 27 74 20 6f 76 | ay.so.........the.edges.don't.ov |
| 2a60 | 65 72 6c 61 70 20 73 6f 20 6d 75 63 68 2e 0a 0a 20 20 20 20 63 72 65 61 74 65 5f 75 73 69 6e 67 | erlap.so.much.......create_using |
| 2a80 | 20 3a 20 4e 65 74 77 6f 72 6b 58 20 67 72 61 70 68 20 63 6f 6e 73 74 72 75 63 74 6f 72 2c 20 6f | .:.NetworkX.graph.constructor,.o |
| 2aa0 | 70 74 69 6f 6e 61 6c 20 28 64 65 66 61 75 6c 74 3d 6e 78 2e 47 72 61 70 68 29 0a 20 20 20 20 20 | ptional.(default=nx.Graph)...... |
| 2ac0 | 20 20 20 47 72 61 70 68 20 74 79 70 65 20 74 6f 20 63 72 65 61 74 65 2e 20 49 66 20 67 72 61 70 | ...Graph.type.to.create..If.grap |
| 2ae0 | 68 20 69 6e 73 74 61 6e 63 65 2c 20 74 68 65 6e 20 63 6c 65 61 72 65 64 20 62 65 66 6f 72 65 20 | h.instance,.then.cleared.before. |
| 2b00 | 70 6f 70 75 6c 61 74 65 64 2e 0a 0a 20 20 20 20 52 65 74 75 72 6e 73 0a 20 20 20 20 2d 2d 2d 2d | populated.......Returns.....---- |
| 2b20 | 2d 2d 2d 0a 20 20 20 20 4e 65 74 77 6f 72 6b 58 20 67 72 61 70 68 0a 20 20 20 20 20 20 20 20 54 | ---.....NetworkX.graph.........T |
| 2b40 | 68 65 20 2a 6d 2a 20 62 79 20 2a 6e 2a 20 74 72 69 61 6e 67 75 6c 61 72 20 6c 61 74 74 69 63 65 | he.*m*.by.*n*.triangular.lattice |
| 2b60 | 20 67 72 61 70 68 2e 0a 20 20 20 20 72 02 00 00 00 e9 05 00 00 00 e9 03 00 00 00 7a 29 6d 20 3e | .graph......r..............z)m.> |
| 2b80 | 20 32 20 61 6e 64 20 6e 20 3e 20 34 20 72 65 71 75 69 72 65 64 20 66 6f 72 20 70 65 72 69 6f 64 | .2.and.n.>.4.required.for.period |
| 2ba0 | 69 63 2e 20 6d 3d 7a 04 2c 20 6e 3d 72 15 00 00 00 72 25 00 00 00 63 01 00 00 00 00 00 00 00 00 | ic..m=z.,.n=r....r%...c......... |
| 2bc0 | 00 00 00 05 00 00 00 33 00 00 00 f3 48 00 00 00 95 02 4b 00 01 00 97 00 7c 00 5d 19 00 00 7d 01 | .......3....H.....K.....|.]...}. |
| 2be0 | 89 04 64 00 89 03 1a 00 44 00 5d 0f 00 00 7d 02 7c 02 7c 01 66 02 7c 02 64 01 7a 00 00 00 7c 01 | ..d.....D.]...}.|.|.f.|.d.z...|. |
| 2c00 | 66 02 66 02 96 01 97 01 01 00 8c 11 04 00 8c 1b 04 00 79 00 ad 03 77 01 a9 02 4e 72 15 00 00 00 | f.f...............y...w...Nr.... |
| 2c20 | 72 19 00 00 00 a9 05 72 1a 00 00 00 72 1c 00 00 00 72 1b 00 00 00 da 01 4e 72 1d 00 00 00 73 05 | r......r....r....r......Nr....s. |
| 2c40 | 00 00 00 20 20 20 80 80 72 1e 00 00 00 72 1f 00 00 00 7a 2b 74 72 69 61 6e 67 75 6c 61 72 5f 6c | ........r....r....z+triangular_l |
| 2c60 | 61 74 74 69 63 65 5f 67 72 61 70 68 2e 3c 6c 6f 63 61 6c 73 3e 2e 3c 67 65 6e 65 78 70 72 3e f2 | attice_graph.<locals>.<genexpr>. |
| 2c80 | 00 00 00 73 35 00 00 00 f8 e8 00 f8 80 00 d2 14 4a a8 61 c0 14 c0 62 c0 71 c0 18 d2 14 4a b8 41 | ...s5...........J.a...b.q....J.A |
| 2ca0 | 90 71 98 21 90 66 98 71 a0 31 99 75 a0 61 98 6a d4 15 29 d0 14 4a d0 15 29 d1 14 4a f9 f3 04 00 | .q.!.f.q.1.u.a.j..)..J..)..J.... |
| 2cc0 | 00 00 83 1f 22 01 63 01 00 00 00 00 00 00 00 00 00 00 00 06 00 00 00 33 00 00 00 f3 42 00 00 00 | ....".c................3....B... |
| 2ce0 | 95 01 4b 00 01 00 97 00 7c 00 5d 16 00 00 7d 01 89 03 44 00 5d 0f 00 00 7d 02 7c 02 7c 01 66 02 | ..K.....|.]...}...D.]...}.|.|.f. |
| 2d00 | 7c 02 7c 01 64 00 7a 00 00 00 66 02 66 02 96 01 97 01 01 00 8c 11 04 00 8c 18 04 00 79 01 ad 03 | |.|.d.z...f.f...............y... |
| 2d20 | 77 01 29 02 72 15 00 00 00 4e 72 19 00 00 00 29 04 72 1a 00 00 00 72 1c 00 00 00 72 1b 00 00 00 | w.).r....Nr....).r....r....r.... |
| 2d40 | 72 1d 00 00 00 73 04 00 00 00 20 20 20 80 72 1e 00 00 00 72 1f 00 00 00 7a 2b 74 72 69 61 6e 67 | r....s........r....r....z+triang |
| 2d60 | 75 6c 61 72 5f 6c 61 74 74 69 63 65 5f 67 72 61 70 68 2e 3c 6c 6f 63 61 6c 73 3e 2e 3c 67 65 6e | ular_lattice_graph.<locals>.<gen |
| 2d80 | 65 78 70 72 3e f3 00 00 00 73 2f 00 00 00 f8 e8 00 f8 80 00 d2 14 4a a8 61 c0 54 d2 14 4a c0 01 | expr>....s/...........J.a.T..J.. |
| 2da0 | 90 71 98 21 90 66 98 71 a0 21 a0 61 a1 25 98 6a d4 15 29 d0 14 4a d0 15 29 d1 14 4a f9 72 22 00 | .q.!.f.q.!.a.%.j..)..J..)..J.r". |
| 2dc0 | 00 00 4e 63 01 00 00 00 00 00 00 00 00 00 00 00 06 00 00 00 33 00 00 00 f3 4e 00 00 00 95 02 4b | ..Nc................3....N.....K |
| 2de0 | 00 01 00 97 00 7c 00 5d 1c 00 00 7d 01 89 04 64 00 89 03 1a 00 44 00 5d 12 00 00 7d 02 7c 02 7c | .....|.]...}...d.....D.]...}.|.| |
| 2e00 | 01 66 02 7c 02 64 01 7a 00 00 00 7c 01 64 01 7a 00 00 00 66 02 66 02 96 01 97 01 01 00 8c 14 04 | .f.|.d.z...|.d.z...f.f.......... |
| 2e20 | 00 8c 1e 04 00 79 00 ad 03 77 01 72 50 00 00 00 72 19 00 00 00 72 51 00 00 00 73 05 00 00 00 20 | .....y...w.rP...r....rQ...s..... |
| 2e40 | 20 20 80 80 72 1e 00 00 00 72 1f 00 00 00 7a 2b 74 72 69 61 6e 67 75 6c 61 72 5f 6c 61 74 74 69 | ....r....r....z+triangular_latti |
| 2e60 | 63 65 5f 67 72 61 70 68 2e 3c 6c 6f 63 61 6c 73 3e 2e 3c 67 65 6e 65 78 70 72 3e f5 00 00 00 73 | ce_graph.<locals>.<genexpr>....s |
| 2e80 | 3b 00 00 00 f8 e8 00 f8 80 00 d2 14 55 b0 21 c8 44 d0 51 53 d0 52 53 c8 48 d2 14 55 c0 71 90 71 | ;...........U.!.D.QS.RS.H..U.q.q |
| 2ea0 | 98 21 90 66 98 71 a0 31 99 75 a0 61 a8 21 a1 65 98 6e d4 15 2d d0 14 55 d0 15 2d d1 14 55 f9 f3 | .!.f.q.1.u.a.!.e.n..-..U..-..U.. |
| 2ec0 | 04 00 00 00 83 22 25 01 63 01 00 00 00 00 00 00 00 00 00 00 00 06 00 00 00 33 00 00 00 f3 4e 00 | ....."%.c................3....N. |
| 2ee0 | 00 00 95 02 4b 00 01 00 97 00 7c 00 5d 1c 00 00 7d 01 89 04 64 00 89 03 1a 00 44 00 5d 12 00 00 | ....K.....|.]...}...d.....D.]... |
| 2f00 | 7d 02 7c 02 64 01 7a 00 00 00 7c 01 66 02 7c 02 7c 01 64 01 7a 00 00 00 66 02 66 02 96 01 97 01 | }.|.d.z...|.f.|.|.d.z...f.f..... |
| 2f20 | 01 00 8c 14 04 00 8c 1e 04 00 79 00 ad 03 77 01 72 50 00 00 00 72 19 00 00 00 72 51 00 00 00 73 | ..........y...w.rP...r....rQ...s |
| 2f40 | 05 00 00 00 20 20 20 80 80 72 1e 00 00 00 72 1f 00 00 00 7a 2b 74 72 69 61 6e 67 75 6c 61 72 5f | .........r....r....z+triangular_ |
| 2f60 | 6c 61 74 74 69 63 65 5f 67 72 61 70 68 2e 3c 6c 6f 63 61 6c 73 3e 2e 3c 67 65 6e 65 78 70 72 3e | lattice_graph.<locals>.<genexpr> |
| 2f80 | f6 00 00 00 73 3b 00 00 00 f8 e8 00 f8 80 00 d2 14 54 b0 21 c8 34 d0 50 52 d0 51 52 c8 38 d2 14 | ....s;...........T.!.4.PR.QR.8.. |
| 2fa0 | 54 c0 61 90 71 98 31 91 75 98 61 90 6a a0 31 a0 61 a8 21 a1 65 a0 2a d4 15 2d d0 14 54 d0 15 2d | T.a.q.1.u.a.j.1.a.!.e.*..-..T..- |
| 2fc0 | d1 14 54 f9 72 56 00 00 00 a9 01 da 10 63 6f 6e 74 72 61 63 74 65 64 5f 6e 6f 64 65 73 54 63 01 | ..T.rV.......contracted_nodesTc. |
| 2fe0 | 00 00 00 00 00 00 00 00 00 00 00 03 00 00 00 33 00 00 00 f3 26 00 00 00 95 01 4b 00 01 00 97 00 | ...............3....&.....K..... |
| 3000 | 7c 00 5d 08 00 00 7d 01 89 02 7c 01 66 02 96 01 97 01 01 00 8c 0a 04 00 79 00 ad 03 77 01 72 18 | |.]...}...|.f...........y...w.r. |
| 3020 | 00 00 00 72 19 00 00 00 29 03 72 1a 00 00 00 72 1c 00 00 00 72 52 00 00 00 73 03 00 00 00 20 20 | ...r....).r....r....rR...s...... |
| 3040 | 80 72 1e 00 00 00 72 1f 00 00 00 7a 2b 74 72 69 61 6e 67 75 6c 61 72 5f 6c 61 74 74 69 63 65 5f | .r....r....z+triangular_lattice_ |
| 3060 | 67 72 61 70 68 2e 3c 6c 6f 63 61 6c 73 3e 2e 3c 67 65 6e 65 78 70 72 3e 01 01 00 00 73 15 00 00 | graph.<locals>.<genexpr>....s... |
| 3080 | 00 f8 e8 00 f8 80 00 d2 1b 37 a0 71 98 51 a0 01 9c 46 d1 1b 37 f9 73 04 00 00 00 83 0e 11 01 63 | .........7.q.Q...F..7.s........c |
| 30a0 | 01 00 00 00 00 00 00 00 00 00 00 00 03 00 00 00 33 00 00 00 f3 30 00 00 00 95 01 4b 00 01 00 97 | ................3....0.....K.... |
| 30c0 | 00 7c 00 5d 0d 00 00 7d 01 89 03 44 00 5d 06 00 00 7d 02 7c 01 96 01 97 01 01 00 8c 08 04 00 8c | .|.]...}...D.]...}.|............ |
| 30e0 | 0f 04 00 79 00 ad 03 77 01 72 18 00 00 00 72 19 00 00 00 a9 04 72 1a 00 00 00 72 1b 00 00 00 72 | ...y...w.r....r......r....r....r |
| 3100 | 1c 00 00 00 72 3b 00 00 00 73 04 00 00 00 20 20 20 80 72 1e 00 00 00 72 1f 00 00 00 7a 2b 74 72 | ....r;...s........r....r....z+tr |
| 3120 | 69 61 6e 67 75 6c 61 72 5f 6c 61 74 74 69 63 65 5f 67 72 61 70 68 2e 3c 6c 6f 63 61 6c 73 3e 2e | iangular_lattice_graph.<locals>. |
| 3140 | 3c 67 65 6e 65 78 70 72 3e 05 01 00 00 f3 1d 00 00 00 f8 e8 00 f8 80 00 d2 0d 2c 90 41 a0 74 d2 | <genexpr>.................,.A.t. |
| 3160 | 0d 2c a0 21 8c 61 d0 0d 2c 88 61 d1 0d 2c f9 f3 04 00 00 00 83 13 16 01 63 01 00 00 00 00 00 00 | .,.!.a..,.a..,..........c....... |
| 3180 | 00 00 00 00 00 03 00 00 00 33 00 00 00 f3 30 00 00 00 95 01 4b 00 01 00 97 00 7c 00 5d 0d 00 00 | .........3....0.....K.....|.]... |
| 31a0 | 7d 01 89 03 44 00 5d 06 00 00 7d 02 7c 02 96 01 97 01 01 00 8c 08 04 00 8c 0f 04 00 79 00 ad 03 | }...D.]...}.|...............y... |
| 31c0 | 77 01 72 18 00 00 00 72 19 00 00 00 72 5c 00 00 00 73 04 00 00 00 20 20 20 80 72 1e 00 00 00 72 | w.r....r....r\...s........r....r |
| 31e0 | 1f 00 00 00 7a 2b 74 72 69 61 6e 67 75 6c 61 72 5f 6c 61 74 74 69 63 65 5f 67 72 61 70 68 2e 3c | ....z+triangular_lattice_graph.< |
| 3200 | 6c 6f 63 61 6c 73 3e 2e 3c 67 65 6e 65 78 70 72 3e 06 01 00 00 72 5d 00 00 00 72 5e 00 00 00 63 | locals>.<genexpr>....r]...r^...c |
| 3220 | 01 00 00 00 00 00 00 00 00 00 00 00 05 00 00 00 33 00 00 00 f3 42 00 00 00 95 01 4b 00 01 00 97 | ................3....B.....K.... |
| 3240 | 00 7c 00 5d 16 00 00 7d 01 89 03 44 00 5d 0f 00 00 7d 02 64 00 7c 02 64 01 7a 06 00 00 7a 05 00 | .|.]...}...D.]...}.d.|.d.z...z.. |
| 3260 | 00 7c 01 7a 00 00 00 96 01 97 01 01 00 8c 11 04 00 8c 18 04 00 79 02 ad 03 77 01 a9 03 67 00 00 | .|.z.................y...w...g.. |
| 3280 | 00 00 00 00 e0 3f 72 25 00 00 00 4e 72 19 00 00 00 72 5c 00 00 00 73 04 00 00 00 20 20 20 80 72 | .....?r%...Nr....r\...s........r |
| 32a0 | 1e 00 00 00 72 1f 00 00 00 7a 2b 74 72 69 61 6e 67 75 6c 61 72 5f 6c 61 74 74 69 63 65 5f 67 72 | ....r....z+triangular_lattice_gr |
| 32c0 | 61 70 68 2e 3c 6c 6f 63 61 6c 73 3e 2e 3c 67 65 6e 65 78 70 72 3e 07 01 00 00 73 2b 00 00 00 f8 | aph.<locals>.<genexpr>....s+.... |
| 32e0 | e8 00 f8 80 00 d2 0d 3c a0 41 b0 74 d2 0d 3c b0 21 88 63 90 51 98 11 91 55 89 6d 98 61 d5 0e 1f | .......<.A.t..<.!.c.Q...U.m.a... |
| 3300 | d0 0d 3c d0 0e 1f d1 0d 3c f9 72 22 00 00 00 63 01 00 00 00 00 00 00 00 00 00 00 00 05 00 00 00 | ..<.....<.r"...c................ |
| 3320 | 33 00 00 00 f3 48 00 00 00 95 02 4b 00 01 00 97 00 7c 00 5d 19 00 00 7d 01 89 04 44 00 5d 12 00 | 3....H.....K.....|.]...}...D.].. |
| 3340 | 00 7d 02 89 03 7c 02 7a 05 00 00 64 00 7c 01 7a 05 00 00 7c 01 7a 05 00 00 7a 00 00 00 96 01 97 | .}...|.z...d.|.z...|.z...z...... |
| 3360 | 01 01 00 8c 14 04 00 8c 1b 04 00 79 01 ad 03 77 01 a9 02 67 7b 14 ae 47 e1 7a 84 3f 4e 72 19 00 | ...........y...w...g{..G.z.?Nr.. |
| 3380 | 00 00 a9 05 72 1a 00 00 00 72 1b 00 00 00 72 1c 00 00 00 da 01 68 72 3b 00 00 00 73 05 00 00 00 | ....r....r....r......hr;...s.... |
| 33a0 | 20 20 20 80 80 72 1e 00 00 00 72 1f 00 00 00 7a 2b 74 72 69 61 6e 67 75 6c 61 72 5f 6c 61 74 74 | .....r....r....z+triangular_latt |
| 33c0 | 69 63 65 5f 67 72 61 70 68 2e 3c 6c 6f 63 61 6c 73 3e 2e 3c 67 65 6e 65 78 70 72 3e 0a 01 00 00 | ice_graph.<locals>.<genexpr>.... |
| 33e0 | 73 2f 00 00 00 f8 e8 00 f8 80 00 d2 11 43 a8 31 b8 64 d2 11 43 b8 11 90 21 90 61 91 25 98 24 a0 | s/...........C.1.d..C...!.a.%.$. |
| 3400 | 11 99 28 a0 51 99 2c d5 12 26 d0 11 43 d0 12 26 d1 11 43 f9 72 53 00 00 00 63 01 00 00 00 00 00 | ..(.Q.,..&..C..&..C.rS...c...... |
| 3420 | 00 00 00 00 00 00 04 00 00 00 33 00 00 00 f3 36 00 00 00 95 02 4b 00 01 00 97 00 7c 00 5d 10 00 | ..........3....6.....K.....|.].. |
| 3440 | 00 7d 01 89 04 44 00 5d 09 00 00 7d 02 89 03 7c 02 7a 05 00 00 96 01 97 01 01 00 8c 0b 04 00 8c | .}...D.]...}...|.z.............. |
| 3460 | 12 04 00 79 00 ad 03 77 01 72 18 00 00 00 72 19 00 00 00 72 64 00 00 00 73 05 00 00 00 20 20 20 | ...y...w.r....r....rd...s....... |
| 3480 | 80 80 72 1e 00 00 00 72 1f 00 00 00 7a 2b 74 72 69 61 6e 67 75 6c 61 72 5f 6c 61 74 74 69 63 65 | ..r....r....z+triangular_lattice |
| 34a0 | 5f 67 72 61 70 68 2e 3c 6c 6f 63 61 6c 73 3e 2e 3c 67 65 6e 65 78 70 72 3e 0c 01 00 00 73 21 00 | _graph.<locals>.<genexpr>....s!. |
| 34c0 | 00 00 f8 e8 00 f8 80 00 d2 11 34 98 41 a8 74 d2 11 34 a8 21 90 21 90 61 95 25 d0 11 34 90 25 d1 | ..........4.A.t..4.!.!.a.%..4.%. |
| 34e0 | 11 34 f9 f3 04 00 00 00 83 16 19 01 da 03 70 6f 73 29 0a 72 08 00 00 00 72 06 00 00 00 da 05 72 | .4............pos).r....r......r |
| 3500 | 61 6e 67 65 72 30 00 00 00 da 1a 6e 65 74 77 6f 72 6b 78 2e 61 6c 67 6f 72 69 74 68 6d 73 2e 6d | anger0.....networkx.algorithms.m |
| 3520 | 69 6e 6f 72 73 72 59 00 00 00 da 11 72 65 6d 6f 76 65 5f 6e 6f 64 65 73 5f 66 72 6f 6d 72 04 00 | inorsrY.....remove_nodes_fromr.. |
| 3540 | 00 00 da 03 7a 69 70 72 05 00 00 00 29 15 72 35 00 00 00 72 36 00 00 00 72 37 00 00 00 da 0e 77 | ....zipr....).r5...r6...r7.....w |
| 3560 | 69 74 68 5f 70 6f 73 69 74 69 6f 6e 73 72 38 00 00 00 72 49 00 00 00 da 03 6d 73 67 72 59 00 00 | ith_positionsr8...rI.....msgrY.. |
| 3580 | 00 72 1b 00 00 00 72 1c 00 00 00 da 02 69 69 da 02 6a 6a da 02 78 78 da 02 79 79 da 01 78 da 01 | .r....r......ii..jj..xx..yy..x.. |
| 35a0 | 79 72 68 00 00 00 72 52 00 00 00 72 1d 00 00 00 72 65 00 00 00 72 3b 00 00 00 73 15 00 00 00 20 | yrh...rR...r....re...r;...s..... |
| 35c0 | 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 40 40 40 40 72 1e 00 00 00 72 11 00 00 00 72 11 | ................@@@@r....r....r. |
| 35e0 | 00 00 00 ad 00 00 00 73 00 02 00 00 fb 80 00 f4 72 01 00 09 14 90 41 90 7c d3 08 24 80 41 d8 07 | .......s........r.....A.|..$.A.. |
| 3600 | 08 88 41 82 76 90 11 90 61 92 16 d8 0f 10 88 08 d9 07 0f d8 0b 0c 88 71 8a 35 90 41 98 01 92 45 | ..A.v...a..............q.5.A...E |
| 3620 | d8 14 3d b8 61 b8 53 c0 04 c0 51 c0 43 d0 12 48 88 43 dc 12 1f a0 03 d3 12 24 d0 0c 24 e0 09 0a | ..=.a.S...Q.C..H.C.......$..$... |
| 3640 | 88 51 89 15 90 31 89 0c 80 41 dc 0b 10 90 11 90 51 91 15 8b 3c 80 44 dc 0b 10 90 11 90 51 91 15 | .Q...1...A......Q...<.D......Q.. |
| 3660 | 8b 3c 80 44 e0 04 05 d7 04 14 d1 04 14 d4 14 4a b0 34 d4 14 4a d4 04 4a d8 04 05 d7 04 14 d1 04 | .<.D...........J.4..J..J........ |
| 3680 | 14 d3 14 4a b0 34 b8 02 b8 11 b0 38 d4 14 4a d4 04 4a e0 04 05 d7 04 14 d1 04 14 d4 14 55 b0 74 | ...J.4.....8..J..J...........U.t |
| 36a0 | b8 41 b8 61 c0 01 b8 45 b1 7b d4 14 55 d4 04 55 d8 04 05 d7 04 14 d1 04 14 d4 14 54 b0 74 b8 44 | .A.a...E.{..U..U...........T.t.D |
| 36c0 | b8 51 b8 71 b8 44 b1 7a d4 14 54 d4 04 54 e5 04 3b e0 07 0f 90 34 d1 07 17 d8 11 15 f2 00 01 09 | .Q.q.D.z..T..T..;....4.......... |
| 36e0 | 34 88 41 d9 10 20 a0 11 a0 51 a8 01 a0 46 a8 51 b0 01 a8 46 d3 10 33 89 41 f0 03 01 09 34 e0 11 | 4.A......Q...F.Q...F..3.A....4.. |
| 3700 | 15 90 62 90 71 90 18 f2 00 01 09 34 88 41 d9 10 20 a0 11 a0 51 a8 01 a0 46 a8 51 b0 01 a8 46 d3 | ..b.q......4.A......Q...F.Q...F. |
| 3720 | 10 33 89 41 f1 03 01 09 34 e0 09 0a 88 51 8a 15 e0 08 09 d7 08 1b d1 08 1b d3 1b 37 a8 44 b0 11 | .3.A....4....Q.............7.D.. |
| 3740 | b0 14 b0 41 b0 14 a9 4a d4 1b 37 d4 08 37 f1 06 00 08 16 db 0d 2c 98 14 d4 0d 2c 88 02 db 0d 2c | ...A...J..7..7.......,....,...., |
| 3760 | 98 14 d4 0d 2c 88 02 db 0d 3c a8 14 d4 0d 3c 88 02 dc 0c 10 90 11 8b 47 90 61 89 4b 88 01 d9 0b | ....,....<....<........G.a.K.... |
| 3780 | 13 dc 11 43 b0 04 d4 11 43 89 42 e4 11 34 a0 14 d4 11 34 88 42 dc 30 33 b0 42 b8 02 b8 42 c0 02 | ...C....C.B..4....4.B.03.B...B.. |
| 37a0 | d3 30 43 d7 0e 53 d1 0e 53 a1 2a a0 21 a0 51 a8 01 a8 31 c8 01 c8 31 c0 76 d0 51 52 c2 7b 90 01 | .0C..S..S.*.!.Q...1...1.v.QR.{.. |
| 37c0 | 90 31 88 76 98 01 98 31 90 76 89 7e d0 0e 53 88 03 d3 0e 53 dc 08 1b 98 41 98 73 a0 45 d4 08 2a | .1.v...1.v.~..S....S....A.s.E..* |
| 37e0 | d8 0b 0c 80 48 f9 f5 05 00 0f 54 01 73 0c 00 00 00 c6 16 10 47 04 0a c6 27 09 47 04 0a 63 05 00 | ....H.....T.s.......G...'.G..c.. |
| 3800 | 00 00 00 00 00 00 00 00 00 00 0a 00 00 00 03 00 00 00 f3 8a 03 00 00 87 14 87 15 87 16 97 00 74 | ...............................t |
| 3820 | 01 00 00 00 00 00 00 00 00 64 01 7c 04 ab 02 00 00 00 00 00 00 7d 05 7c 00 64 01 6b 28 00 00 73 | .........d.|.........}.|.d.k(..s |
| 3840 | 05 7c 01 64 01 6b 28 00 00 72 02 7c 05 53 00 7c 02 72 1f 7c 01 64 02 7a 06 00 00 64 03 6b 28 00 | .|.d.k(..r.|.S.|.r.|.d.z...d.k(. |
| 3860 | 00 73 0a 7c 00 64 02 6b 02 00 00 73 05 7c 01 64 02 6b 02 00 00 72 0d 64 04 7d 06 74 03 00 00 00 | .s.|.d.k...s.|.d.k...r.d.}.t.... |
| 3880 | 00 00 00 00 00 7c 06 ab 01 00 00 00 00 00 00 82 01 64 02 7c 00 7a 05 00 00 8a 14 74 05 00 00 00 | .....|...........d.|.z.....t.... |
| 38a0 | 00 00 00 00 00 89 14 64 02 7a 00 00 00 ab 01 00 00 00 00 00 00 8a 16 74 05 00 00 00 00 00 00 00 | .......d.z.............t........ |
| 38c0 | 00 7c 01 64 03 7a 00 00 00 ab 01 00 00 00 00 00 00 7d 07 88 14 88 16 66 02 64 05 84 08 7c 07 44 | .|.d.z...........}.....f.d...|.D |
| 38e0 | 00 ab 00 00 00 00 00 00 00 7d 08 88 16 66 01 64 06 84 08 7c 07 64 07 7c 01 1a 00 44 00 ab 00 00 | .........}...f.d...|.d.|...D.... |
| 3900 | 00 00 00 00 00 7d 09 7c 05 6a 07 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 08 ab | .....}.|.j...................|.. |
| 3920 | 01 00 00 00 00 00 00 01 00 7c 05 6a 07 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c | .........|.j...................| |
| 3940 | 09 ab 01 00 00 00 00 00 00 01 00 7c 05 6a 09 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | ...........|.j.................. |
| 3960 | 00 64 01 89 14 64 03 7a 00 00 00 66 02 ab 01 00 00 00 00 00 00 01 00 7c 05 6a 09 00 00 00 00 00 | .d...d.z...f...........|.j...... |
| 3980 | 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 01 89 14 64 03 7a 00 00 00 7c 01 64 02 7a 06 00 00 7a | .............|...d.z...|.d.z...z |
| 39a0 | 05 00 00 66 02 ab 01 00 00 00 00 00 00 01 00 64 01 64 08 6c 05 6d 06 7d 0a 01 00 7c 02 72 5e 7c | ...f...........d.d.l.m.}...|.r^| |
| 39c0 | 07 64 07 7c 01 1a 00 44 00 5d 10 00 00 7d 0b 02 00 7c 0a 7c 05 7c 0b 64 01 66 02 7c 0b 89 14 66 | .d.|...D.]...}...|.|.|.d.f.|...f |
| 39e0 | 02 ab 03 00 00 00 00 00 00 7d 05 8c 12 04 00 7c 07 64 03 64 07 1a 00 44 00 5d 13 00 00 7d 0b 02 | .........}.....|.d.d...D.]...}.. |
| 3a00 | 00 7c 0a 7c 05 7c 0b 64 03 66 02 7c 0b 89 14 64 03 7a 00 00 00 66 02 ab 03 00 00 00 00 00 00 7d | .|.|.|.d.f.|...d.z...f.........} |
| 3a20 | 05 8c 15 04 00 89 16 64 03 89 14 1a 00 44 00 5d 10 00 00 7d 0c 02 00 7c 0a 7c 05 64 01 7c 0c 66 | .......d.....D.]...}...|.|.d.|.f |
| 3a40 | 02 7c 01 7c 0c 66 02 ab 03 00 00 00 00 00 00 7d 05 8c 12 04 00 7c 05 6a 09 00 00 00 00 00 00 00 | .|.|.f.........}.....|.j........ |
| 3a60 | 00 00 00 00 00 00 00 00 00 00 00 7c 01 89 14 66 02 ab 01 00 00 00 00 00 00 01 00 88 16 66 01 64 | ...........|...f.............f.d |
| 3a80 | 09 84 08 7c 07 44 00 ab 00 00 00 00 00 00 00 7d 0d 88 16 66 01 64 0a 84 08 7c 07 44 00 ab 00 00 | ...|.D.........}...f.d...|.D.... |
| 3aa0 | 00 00 00 00 00 7d 0e 88 16 66 01 64 0b 84 08 7c 07 44 00 ab 00 00 00 00 00 00 00 7d 0f 74 0f 00 | .....}...f.d...|.D.........}.t.. |
| 3ac0 | 00 00 00 00 00 00 00 64 0c ab 01 00 00 00 00 00 00 64 02 7a 0b 00 00 8a 15 7c 02 72 0d 88 15 88 | .......d.........d.z.....|.r.... |
| 3ae0 | 16 66 02 64 0d 84 08 7c 07 44 00 ab 00 00 00 00 00 00 00 7d 10 6e 0c 88 15 88 16 66 02 64 0e 84 | .f.d...|.D.........}.n.....f.d.. |
| 3b00 | 08 7c 07 44 00 ab 00 00 00 00 00 00 00 7d 10 74 11 00 00 00 00 00 00 00 00 7c 0d 7c 0e 7c 0f 7c | .|.D.........}.t.........|.|.|.| |
| 3b20 | 10 ab 04 00 00 00 00 00 00 44 00 8f 0b 8f 0c 8f 11 8f 12 63 05 69 00 63 02 5d 15 00 00 5c 04 00 | .........D.........c.i.c.]...\.. |
| 3b40 | 00 7d 0b 7d 0c 7d 11 7d 12 7c 0b 7c 0c 66 02 7c 05 76 00 73 01 8c 0f 7c 0b 7c 0c 66 02 7c 11 7c | .}.}.}.}.|.|.f.|.v.s...|.|.f.|.| |
| 3b60 | 12 66 02 93 02 8c 17 04 00 7d 13 7d 11 7d 0c 7d 0b 7d 12 74 13 00 00 00 00 00 00 00 00 7c 05 7c | .f.......}.}.}.}.}.t.........|.| |
| 3b80 | 13 64 0f ab 03 00 00 00 00 00 00 01 00 7c 05 53 00 63 02 01 00 63 05 7d 12 7d 11 7d 0c 7d 0b 77 | .d...........|.S.c...c.}.}.}.}.w |
| 3ba0 | 00 29 10 61 8a 07 00 00 52 65 74 75 72 6e 73 20 61 6e 20 60 6d 60 20 62 79 20 60 6e 60 20 68 65 | .).a....Returns.an.`m`.by.`n`.he |
| 3bc0 | 78 61 67 6f 6e 61 6c 20 6c 61 74 74 69 63 65 20 67 72 61 70 68 2e 0a 0a 20 20 20 20 54 68 65 20 | xagonal.lattice.graph.......The. |
| 3be0 | 2a 68 65 78 61 67 6f 6e 61 6c 20 6c 61 74 74 69 63 65 20 67 72 61 70 68 2a 20 69 73 20 61 20 67 | *hexagonal.lattice.graph*.is.a.g |
| 3c00 | 72 61 70 68 20 77 68 6f 73 65 20 6e 6f 64 65 73 20 61 6e 64 20 65 64 67 65 73 20 61 72 65 0a 20 | raph.whose.nodes.and.edges.are.. |
| 3c20 | 20 20 20 74 68 65 20 60 68 65 78 61 67 6f 6e 61 6c 20 74 69 6c 69 6e 67 60 5f 20 6f 66 20 74 68 | ...the.`hexagonal.tiling`_.of.th |
| 3c40 | 65 20 70 6c 61 6e 65 2e 0a 0a 20 20 20 20 54 68 65 20 72 65 74 75 72 6e 65 64 20 67 72 61 70 68 | e.plane.......The.returned.graph |
| 3c60 | 20 77 69 6c 6c 20 68 61 76 65 20 60 6d 60 20 72 6f 77 73 20 61 6e 64 20 60 6e 60 20 63 6f 6c 75 | .will.have.`m`.rows.and.`n`.colu |
| 3c80 | 6d 6e 73 20 6f 66 20 68 65 78 61 67 6f 6e 73 2e 0a 20 20 20 20 60 4f 64 64 20 6e 75 6d 62 65 72 | mns.of.hexagons......`Odd.number |
| 3ca0 | 65 64 20 63 6f 6c 75 6d 6e 73 60 5f 20 61 72 65 20 73 68 69 66 74 65 64 20 75 70 20 72 65 6c 61 | ed.columns`_.are.shifted.up.rela |
| 3cc0 | 74 69 76 65 20 74 6f 20 65 76 65 6e 20 6e 75 6d 62 65 72 65 64 20 63 6f 6c 75 6d 6e 73 2e 0a 0a | tive.to.even.numbered.columns... |
| 3ce0 | 20 20 20 20 50 6f 73 69 74 69 6f 6e 73 20 6f 66 20 6e 6f 64 65 73 20 61 72 65 20 63 6f 6d 70 75 | ....Positions.of.nodes.are.compu |
| 3d00 | 74 65 64 20 62 79 20 64 65 66 61 75 6c 74 20 6f 72 20 60 77 69 74 68 5f 70 6f 73 69 74 69 6f 6e | ted.by.default.or.`with_position |
| 3d20 | 73 20 69 73 20 54 72 75 65 60 2e 0a 20 20 20 20 4e 6f 64 65 20 70 6f 73 69 74 69 6f 6e 73 20 63 | s.is.True`......Node.positions.c |
| 3d40 | 72 65 61 74 69 6e 67 20 74 68 65 20 73 74 61 6e 64 61 72 64 20 65 6d 62 65 64 64 69 6e 67 20 69 | reating.the.standard.embedding.i |
| 3d60 | 6e 20 74 68 65 20 70 6c 61 6e 65 0a 20 20 20 20 77 69 74 68 20 73 69 64 65 6c 65 6e 67 74 68 20 | n.the.plane.....with.sidelength. |
| 3d80 | 31 20 61 6e 64 20 61 72 65 20 73 74 6f 72 65 64 20 69 6e 20 74 68 65 20 6e 6f 64 65 20 61 74 74 | 1.and.are.stored.in.the.node.att |
| 3da0 | 72 69 62 75 74 65 20 27 70 6f 73 27 2e 0a 20 20 20 20 60 70 6f 73 20 3d 20 6e 78 2e 67 65 74 5f | ribute.'pos'......`pos.=.nx.get_ |
| 3dc0 | 6e 6f 64 65 5f 61 74 74 72 69 62 75 74 65 73 28 47 2c 20 27 70 6f 73 27 29 60 20 63 72 65 61 74 | node_attributes(G,.'pos')`.creat |
| 3de0 | 65 73 20 61 20 64 69 63 74 20 72 65 61 64 79 20 66 6f 72 20 64 72 61 77 69 6e 67 2e 0a 0a 20 20 | es.a.dict.ready.for.drawing..... |
| 3e00 | 20 20 2e 2e 20 5f 68 65 78 61 67 6f 6e 61 6c 20 74 69 6c 69 6e 67 3a 20 68 74 74 70 73 3a 2f 2f | ....._hexagonal.tiling:.https:// |
| 3e20 | 65 6e 2e 77 69 6b 69 70 65 64 69 61 2e 6f 72 67 2f 77 69 6b 69 2f 48 65 78 61 67 6f 6e 61 6c 5f | en.wikipedia.org/wiki/Hexagonal_ |
| 3e40 | 74 69 6c 69 6e 67 0a 20 20 20 20 2e 2e 20 5f 4f 64 64 20 6e 75 6d 62 65 72 65 64 20 63 6f 6c 75 | tiling........_Odd.numbered.colu |
| 3e60 | 6d 6e 73 3a 20 68 74 74 70 3a 2f 2f 77 77 77 2d 63 73 2d 73 74 75 64 65 6e 74 73 2e 73 74 61 6e | mns:.http://www-cs-students.stan |
| 3e80 | 66 6f 72 64 2e 65 64 75 2f 7e 61 6d 69 74 70 2f 67 61 6d 65 2d 70 72 6f 67 72 61 6d 6d 69 6e 67 | ford.edu/~amitp/game-programming |
| 3ea0 | 2f 67 72 69 64 73 2f 0a 0a 20 20 20 20 50 61 72 61 6d 65 74 65 72 73 0a 20 20 20 20 2d 2d 2d 2d | /grids/......Parameters.....---- |
| 3ec0 | 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 6d 20 3a 20 69 6e 74 0a 20 20 20 20 20 20 20 20 54 68 65 20 6e | ------.....m.:.int.........The.n |
| 3ee0 | 75 6d 62 65 72 20 6f 66 20 72 6f 77 73 20 6f 66 20 68 65 78 61 67 6f 6e 73 20 69 6e 20 74 68 65 | umber.of.rows.of.hexagons.in.the |
| 3f00 | 20 6c 61 74 74 69 63 65 2e 0a 0a 20 20 20 20 6e 20 3a 20 69 6e 74 0a 20 20 20 20 20 20 20 20 54 | .lattice.......n.:.int.........T |
| 3f20 | 68 65 20 6e 75 6d 62 65 72 20 6f 66 20 63 6f 6c 75 6d 6e 73 20 6f 66 20 68 65 78 61 67 6f 6e 73 | he.number.of.columns.of.hexagons |
| 3f40 | 20 69 6e 20 74 68 65 20 6c 61 74 74 69 63 65 2e 0a 0a 20 20 20 20 70 65 72 69 6f 64 69 63 20 3a | .in.the.lattice.......periodic.: |
| 3f60 | 20 62 6f 6f 6c 0a 20 20 20 20 20 20 20 20 57 68 65 74 68 65 72 20 74 6f 20 6d 61 6b 65 20 61 20 | .bool.........Whether.to.make.a. |
| 3f80 | 70 65 72 69 6f 64 69 63 20 67 72 69 64 20 62 79 20 6a 6f 69 6e 69 6e 67 20 74 68 65 20 62 6f 75 | periodic.grid.by.joining.the.bou |
| 3fa0 | 6e 64 61 72 79 20 76 65 72 74 69 63 65 73 2e 0a 20 20 20 20 20 20 20 20 46 6f 72 20 74 68 69 73 | ndary.vertices..........For.this |
| 3fc0 | 20 74 6f 20 77 6f 72 6b 20 60 6e 60 20 6d 75 73 74 20 62 65 20 65 76 65 6e 20 61 6e 64 20 62 6f | .to.work.`n`.must.be.even.and.bo |
| 3fe0 | 74 68 20 60 6e 20 3e 20 31 60 20 61 6e 64 20 60 6d 20 3e 20 31 60 2e 0a 20 20 20 20 20 20 20 20 | th.`n.>.1`.and.`m.>.1`.......... |
| 4000 | 54 68 65 20 70 65 72 69 6f 64 69 63 20 63 6f 6e 6e 65 63 74 69 6f 6e 73 20 63 72 65 61 74 65 20 | The.periodic.connections.create. |
| 4020 | 61 6e 6f 74 68 65 72 20 72 6f 77 20 61 6e 64 20 63 6f 6c 75 6d 6e 20 6f 66 20 68 65 78 61 67 6f | another.row.and.column.of.hexago |
| 4040 | 6e 73 0a 20 20 20 20 20 20 20 20 73 6f 20 74 68 65 73 65 20 67 72 61 70 68 73 20 68 61 76 65 20 | ns.........so.these.graphs.have. |
| 4060 | 66 65 77 65 72 20 6e 6f 64 65 73 20 61 73 20 62 6f 75 6e 64 61 72 79 20 6e 6f 64 65 73 20 61 72 | fewer.nodes.as.boundary.nodes.ar |
| 4080 | 65 20 69 64 65 6e 74 69 66 69 65 64 2e 0a 0a 20 20 20 20 77 69 74 68 5f 70 6f 73 69 74 69 6f 6e | e.identified.......with_position |
| 40a0 | 73 20 3a 20 62 6f 6f 6c 20 28 64 65 66 61 75 6c 74 3a 20 54 72 75 65 29 0a 20 20 20 20 20 20 20 | s.:.bool.(default:.True)........ |
| 40c0 | 20 53 74 6f 72 65 20 74 68 65 20 63 6f 6f 72 64 69 6e 61 74 65 73 20 6f 66 20 65 61 63 68 20 6e | .Store.the.coordinates.of.each.n |
| 40e0 | 6f 64 65 20 69 6e 20 74 68 65 20 67 72 61 70 68 20 6e 6f 64 65 20 61 74 74 72 69 62 75 74 65 20 | ode.in.the.graph.node.attribute. |
| 4100 | 27 70 6f 73 27 2e 0a 20 20 20 20 20 20 20 20 54 68 65 20 63 6f 6f 72 64 69 6e 61 74 65 73 20 70 | 'pos'..........The.coordinates.p |
| 4120 | 72 6f 76 69 64 65 20 61 20 6c 61 74 74 69 63 65 20 77 69 74 68 20 76 65 72 74 69 63 61 6c 20 63 | rovide.a.lattice.with.vertical.c |
| 4140 | 6f 6c 75 6d 6e 73 20 6f 66 20 68 65 78 61 67 6f 6e 73 0a 20 20 20 20 20 20 20 20 6f 66 66 73 65 | olumns.of.hexagons.........offse |
| 4160 | 74 20 74 6f 20 69 6e 74 65 72 6c 65 61 76 65 20 61 6e 64 20 63 6f 76 65 72 20 74 68 65 20 70 6c | t.to.interleave.and.cover.the.pl |
| 4180 | 61 6e 65 2e 0a 20 20 20 20 20 20 20 20 50 65 72 69 6f 64 69 63 20 70 6f 73 69 74 69 6f 6e 73 20 | ane..........Periodic.positions. |
| 41a0 | 73 68 69 66 74 20 74 68 65 20 6e 6f 64 65 73 20 76 65 72 74 69 63 61 6c 6c 79 20 69 6e 20 61 20 | shift.the.nodes.vertically.in.a. |
| 41c0 | 6e 6f 6e 6c 69 6e 65 61 72 20 77 61 79 20 73 6f 0a 20 20 20 20 20 20 20 20 74 68 65 20 65 64 67 | nonlinear.way.so.........the.edg |
| 41e0 | 65 73 20 64 6f 6e 27 74 20 6f 76 65 72 6c 61 70 20 73 6f 20 6d 75 63 68 2e 0a 0a 20 20 20 20 63 | es.don't.overlap.so.much.......c |
| 4200 | 72 65 61 74 65 5f 75 73 69 6e 67 20 3a 20 4e 65 74 77 6f 72 6b 58 20 67 72 61 70 68 20 63 6f 6e | reate_using.:.NetworkX.graph.con |
| 4220 | 73 74 72 75 63 74 6f 72 2c 20 6f 70 74 69 6f 6e 61 6c 20 28 64 65 66 61 75 6c 74 3d 6e 78 2e 47 | structor,.optional.(default=nx.G |
| 4240 | 72 61 70 68 29 0a 20 20 20 20 20 20 20 20 47 72 61 70 68 20 74 79 70 65 20 74 6f 20 63 72 65 61 | raph).........Graph.type.to.crea |
| 4260 | 74 65 2e 20 49 66 20 67 72 61 70 68 20 69 6e 73 74 61 6e 63 65 2c 20 74 68 65 6e 20 63 6c 65 61 | te..If.graph.instance,.then.clea |
| 4280 | 72 65 64 20 62 65 66 6f 72 65 20 70 6f 70 75 6c 61 74 65 64 2e 0a 20 20 20 20 20 20 20 20 49 66 | red.before.populated..........If |
| 42a0 | 20 67 72 61 70 68 20 69 73 20 64 69 72 65 63 74 65 64 2c 20 65 64 67 65 73 20 77 69 6c 6c 20 70 | .graph.is.directed,.edges.will.p |
| 42c0 | 6f 69 6e 74 20 75 70 20 6f 72 20 72 69 67 68 74 2e 0a 0a 20 20 20 20 52 65 74 75 72 6e 73 0a 20 | oint.up.or.right.......Returns.. |
| 42e0 | 20 20 20 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 4e 65 74 77 6f 72 6b 58 20 67 72 61 70 68 0a 20 20 | ...-------.....NetworkX.graph... |
| 4300 | 20 20 20 20 20 20 54 68 65 20 2a 6d 2a 20 62 79 20 2a 6e 2a 20 68 65 78 61 67 6f 6e 61 6c 20 6c | ......The.*m*.by.*n*.hexagonal.l |
| 4320 | 61 74 74 69 63 65 20 67 72 61 70 68 2e 0a 20 20 20 20 72 02 00 00 00 72 25 00 00 00 72 15 00 00 | attice.graph......r....r%...r... |
| 4340 | 00 7a 38 70 65 72 69 6f 64 69 63 20 68 65 78 61 67 6f 6e 61 6c 20 6c 61 74 74 69 63 65 20 6e 65 | .z8periodic.hexagonal.lattice.ne |
| 4360 | 65 64 73 20 6d 20 3e 20 31 2c 20 6e 20 3e 20 31 20 61 6e 64 20 65 76 65 6e 20 6e 63 01 00 00 00 | eds.m.>.1,.n.>.1.and.even.nc.... |
| 4380 | 00 00 00 00 00 00 00 00 06 00 00 00 33 00 00 00 f3 4e 00 00 00 95 02 4b 00 01 00 97 00 7c 00 5d | ............3....N.....K.....|.] |
| 43a0 | 1c 00 00 7d 01 89 04 64 00 89 03 64 01 7a 00 00 00 1a 00 44 00 5d 0f 00 00 7d 02 7c 01 7c 02 66 | ...}...d...d.z.....D.]...}.|.|.f |
| 43c0 | 02 7c 01 7c 02 64 01 7a 00 00 00 66 02 66 02 96 01 97 01 01 00 8c 11 04 00 8c 1e 04 00 79 00 ad | .|.|.d.z...f.f...............y.. |
| 43e0 | 03 77 01 72 50 00 00 00 72 19 00 00 00 29 05 72 1a 00 00 00 72 1b 00 00 00 72 1c 00 00 00 da 01 | .w.rP...r....).r....r....r...... |
| 4400 | 4d 72 3b 00 00 00 73 05 00 00 00 20 20 20 80 80 72 1e 00 00 00 72 1f 00 00 00 7a 2a 68 65 78 61 | Mr;...s.........r....r....z*hexa |
| 4420 | 67 6f 6e 61 6c 5f 6c 61 74 74 69 63 65 5f 67 72 61 70 68 2e 3c 6c 6f 63 61 6c 73 3e 2e 3c 67 65 | gonal_lattice_graph.<locals>.<ge |
| 4440 | 6e 65 78 70 72 3e 4f 01 00 00 73 39 00 00 00 f8 e8 00 f8 80 00 d2 10 4b a8 21 b8 54 c0 27 c0 41 | nexpr>O...s9...........K.!.T.'.A |
| 4460 | c8 01 c1 45 b8 5d d2 10 4b b8 01 90 31 90 61 90 26 98 31 98 61 a0 21 99 65 98 2a d4 11 25 d0 10 | ...E.]..K...1.a.&.1.a.!.e.*..%.. |
| 4480 | 4b d0 11 25 d1 10 4b f9 72 56 00 00 00 63 01 00 00 00 00 00 00 00 00 00 00 00 05 00 00 00 33 00 | K..%..K.rV...c................3. |
| 44a0 | 00 00 f3 5a 00 00 00 95 01 4b 00 01 00 97 00 7c 00 5d 22 00 00 7d 01 89 03 44 00 5d 1b 00 00 7d | ...Z.....K.....|.]"..}...D.]...} |
| 44c0 | 02 7c 01 64 00 7a 06 00 00 7c 02 64 00 7a 06 00 00 6b 28 00 00 73 01 8c 0f 7c 01 7c 02 66 02 7c | .|.d.z...|.d.z...k(..s...|.|.f.| |
| 44e0 | 01 64 01 7a 00 00 00 7c 02 66 02 66 02 96 01 97 01 01 00 8c 1d 04 00 8c 24 04 00 79 02 ad 03 77 | .d.z...|.f.f............$..y...w |
| 4500 | 01 29 03 72 25 00 00 00 72 15 00 00 00 4e 72 19 00 00 00 72 5c 00 00 00 73 04 00 00 00 20 20 20 | .).r%...r....Nr....r\...s....... |
| 4520 | 80 72 1e 00 00 00 72 1f 00 00 00 7a 2a 68 65 78 61 67 6f 6e 61 6c 5f 6c 61 74 74 69 63 65 5f 67 | .r....r....z*hexagonal_lattice_g |
| 4540 | 72 61 70 68 2e 3c 6c 6f 63 61 6c 73 3e 2e 3c 67 65 6e 65 78 70 72 3e 50 01 00 00 73 40 00 00 00 | raph.<locals>.<genexpr>P...s@... |
| 4560 | f8 e8 00 f8 80 00 d2 10 58 a8 21 c0 14 d2 10 58 b8 41 c8 11 c8 51 c9 15 d0 52 53 d0 56 57 d1 52 | ........X.!....X.A...Q...RS.VW.R |
| 4580 | 57 cb 1e 90 31 90 61 90 26 98 31 98 71 99 35 a0 21 98 2a d4 11 25 d0 10 58 d0 11 25 d1 10 58 f9 | W...1.a.&.1.q.5.!.*..%..X..%..X. |
| 45a0 | 73 08 00 00 00 83 15 2b 01 99 12 2b 01 4e 72 58 00 00 00 63 01 00 00 00 00 00 00 00 00 00 00 00 | s......+...+.NrX...c............ |
| 45c0 | 03 00 00 00 33 00 00 00 f3 30 00 00 00 95 01 4b 00 01 00 97 00 7c 00 5d 0d 00 00 7d 01 89 03 44 | ....3....0.....K.....|.]...}...D |
| 45e0 | 00 5d 06 00 00 7d 02 7c 01 96 01 97 01 01 00 8c 08 04 00 8c 0f 04 00 79 00 ad 03 77 01 72 18 00 | .]...}.|...............y...w.r.. |
| 4600 | 00 00 72 19 00 00 00 72 5c 00 00 00 73 04 00 00 00 20 20 20 80 72 1e 00 00 00 72 1f 00 00 00 7a | ..r....r\...s........r....r....z |
| 4620 | 2a 68 65 78 61 67 6f 6e 61 6c 5f 6c 61 74 74 69 63 65 5f 67 72 61 70 68 2e 3c 6c 6f 63 61 6c 73 | *hexagonal_lattice_graph.<locals |
| 4640 | 3e 2e 3c 67 65 6e 65 78 70 72 3e 64 01 00 00 f3 1d 00 00 00 f8 e8 00 f8 80 00 d2 09 28 90 01 a0 | >.<genexpr>d................(... |
| 4660 | 34 d2 09 28 98 61 8c 21 d0 09 28 88 21 d1 09 28 f9 72 5e 00 00 00 63 01 00 00 00 00 00 00 00 00 | 4..(.a.!..(.!..(.r^...c......... |
| 4680 | 00 00 00 03 00 00 00 33 00 00 00 f3 30 00 00 00 95 01 4b 00 01 00 97 00 7c 00 5d 0d 00 00 7d 01 | .......3....0.....K.....|.]...}. |
| 46a0 | 89 03 44 00 5d 06 00 00 7d 02 7c 02 96 01 97 01 01 00 8c 08 04 00 8c 0f 04 00 79 00 ad 03 77 01 | ..D.]...}.|...............y...w. |
| 46c0 | 72 18 00 00 00 72 19 00 00 00 72 5c 00 00 00 73 04 00 00 00 20 20 20 80 72 1e 00 00 00 72 1f 00 | r....r....r\...s........r....r.. |
| 46e0 | 00 00 7a 2a 68 65 78 61 67 6f 6e 61 6c 5f 6c 61 74 74 69 63 65 5f 67 72 61 70 68 2e 3c 6c 6f 63 | ..z*hexagonal_lattice_graph.<loc |
| 4700 | 61 6c 73 3e 2e 3c 67 65 6e 65 78 70 72 3e 65 01 00 00 72 7a 00 00 00 72 5e 00 00 00 63 01 00 00 | als>.<genexpr>e...rz...r^...c... |
| 4720 | 00 00 00 00 00 00 00 00 00 06 00 00 00 33 00 00 00 f3 60 00 00 00 95 01 4b 00 01 00 97 00 7c 00 | .............3....`.....K.....|. |
| 4740 | 5d 25 00 00 7d 01 89 03 44 00 5d 1e 00 00 7d 02 64 00 7c 01 7a 00 00 00 7c 01 64 01 7a 02 00 00 | ]%..}...D.]...}.d.|.z...|.d.z... |
| 4760 | 7a 00 00 00 7c 02 64 01 7a 06 00 00 7c 01 64 01 7a 06 00 00 64 00 7a 0a 00 00 7a 05 00 00 7a 00 | z...|.d.z...|.d.z...d.z...z...z. |
| 4780 | 00 00 96 01 97 01 01 00 8c 20 04 00 8c 27 04 00 79 02 ad 03 77 01 72 61 00 00 00 72 19 00 00 00 | .............'..y...w.ra...r.... |
| 47a0 | 72 5c 00 00 00 73 04 00 00 00 20 20 20 80 72 1e 00 00 00 72 1f 00 00 00 7a 2a 68 65 78 61 67 6f | r\...s........r....r....z*hexago |
| 47c0 | 6e 61 6c 5f 6c 61 74 74 69 63 65 5f 67 72 61 70 68 2e 3c 6c 6f 63 61 6c 73 3e 2e 3c 67 65 6e 65 | nal_lattice_graph.<locals>.<gene |
| 47e0 | 78 70 72 3e 66 01 00 00 73 41 00 00 00 f8 e8 00 f8 80 00 d2 09 53 b8 31 c8 64 d2 09 53 c8 11 88 | xpr>f...sA...........S.1.d..S... |
| 4800 | 23 90 01 89 27 90 41 98 11 91 46 d1 0a 1a 98 61 a0 21 99 65 a8 11 a8 51 a9 15 b0 23 a9 0d d1 1d | #...'.A...F....a.!.e...Q...#.... |
| 4820 | 36 d5 0a 36 d0 09 53 d0 0a 36 d1 09 53 f9 73 04 00 00 00 83 2b 2e 01 72 4e 00 00 00 63 01 00 00 | 6..6..S..6..S.s.....+..rN...c... |
| 4840 | 00 00 00 00 00 00 00 00 00 05 00 00 00 33 00 00 00 f3 48 00 00 00 95 02 4b 00 01 00 97 00 7c 00 | .............3....H.....K.....|. |
| 4860 | 5d 19 00 00 7d 01 89 04 44 00 5d 12 00 00 7d 02 89 03 7c 02 7a 05 00 00 64 00 7c 01 7a 05 00 00 | ]...}...D.]...}...|.z...d.|.z... |
| 4880 | 7c 01 7a 05 00 00 7a 00 00 00 96 01 97 01 01 00 8c 14 04 00 8c 1b 04 00 79 01 ad 03 77 01 72 63 | |.z...z.................y...w.rc |
| 48a0 | 00 00 00 72 19 00 00 00 72 64 00 00 00 73 05 00 00 00 20 20 20 80 80 72 1e 00 00 00 72 1f 00 00 | ...r....rd...s.........r....r... |
| 48c0 | 00 7a 2a 68 65 78 61 67 6f 6e 61 6c 5f 6c 61 74 74 69 63 65 5f 67 72 61 70 68 2e 3c 6c 6f 63 61 | .z*hexagonal_lattice_graph.<loca |
| 48e0 | 6c 73 3e 2e 3c 67 65 6e 65 78 70 72 3e 69 01 00 00 73 2f 00 00 00 f8 e8 00 f8 80 00 d2 0d 3f a0 | ls>.<genexpr>i...s/...........?. |
| 4900 | 71 b8 24 d2 0d 3f b0 51 88 61 90 21 89 65 90 64 98 51 91 68 a0 11 91 6c d5 0e 22 d0 0d 3f d0 0e | q.$..?.Q.a.!.e.d.Q.h...l.."..?.. |
| 4920 | 22 d1 0d 3f f9 72 53 00 00 00 63 01 00 00 00 00 00 00 00 00 00 00 00 04 00 00 00 33 00 00 00 f3 | "..?.rS...c................3.... |
| 4940 | 36 00 00 00 95 02 4b 00 01 00 97 00 7c 00 5d 10 00 00 7d 01 89 04 44 00 5d 09 00 00 7d 02 89 03 | 6.....K.....|.]...}...D.]...}... |
| 4960 | 7c 02 7a 05 00 00 96 01 97 01 01 00 8c 0b 04 00 8c 12 04 00 79 00 ad 03 77 01 72 18 00 00 00 72 | |.z.................y...w.r....r |
| 4980 | 19 00 00 00 72 64 00 00 00 73 05 00 00 00 20 20 20 80 80 72 1e 00 00 00 72 1f 00 00 00 7a 2a 68 | ....rd...s.........r....r....z*h |
| 49a0 | 65 78 61 67 6f 6e 61 6c 5f 6c 61 74 74 69 63 65 5f 67 72 61 70 68 2e 3c 6c 6f 63 61 6c 73 3e 2e | exagonal_lattice_graph.<locals>. |
| 49c0 | 3c 67 65 6e 65 78 70 72 3e 6b 01 00 00 73 21 00 00 00 f8 e8 00 f8 80 00 d2 0d 30 98 01 a8 34 d2 | <genexpr>k...s!...........0...4. |
| 49e0 | 0d 30 a0 61 88 61 90 21 8d 65 d0 0d 30 88 65 d1 0d 30 f9 72 67 00 00 00 72 68 00 00 00 29 0a 72 | .0.a.a.!.e..0.e..0.rg...rh...).r |
| 4a00 | 08 00 00 00 72 06 00 00 00 72 69 00 00 00 72 30 00 00 00 da 0b 72 65 6d 6f 76 65 5f 6e 6f 64 65 | ....r....ri...r0.....remove_node |
| 4a20 | 72 6a 00 00 00 72 59 00 00 00 72 04 00 00 00 72 6c 00 00 00 72 05 00 00 00 29 17 72 35 00 00 00 | rj...rY...r....rl...r....).r5... |
| 4a40 | 72 36 00 00 00 72 37 00 00 00 72 6d 00 00 00 72 38 00 00 00 72 39 00 00 00 72 6e 00 00 00 72 1d | r6...r7...rm...r8...r9...rn...r. |
| 4a60 | 00 00 00 da 09 63 6f 6c 5f 65 64 67 65 73 da 09 72 6f 77 5f 65 64 67 65 73 72 59 00 00 00 72 1b | .....col_edges..row_edgesrY...r. |
| 4a80 | 00 00 00 72 1c 00 00 00 72 6f 00 00 00 72 70 00 00 00 72 71 00 00 00 72 72 00 00 00 72 73 00 00 | ...r....ro...rp...rq...rr...rs.. |
| 4aa0 | 00 72 74 00 00 00 72 68 00 00 00 72 77 00 00 00 72 65 00 00 00 72 3b 00 00 00 73 17 00 00 00 20 | .rt...rh...rw...re...r;...s..... |
| 4ac0 | 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 40 40 40 72 1e 00 00 00 72 12 00 00 00 | ...................@@@r....r.... |
| 4ae0 | 72 12 00 00 00 12 01 00 00 73 0f 02 00 00 fa 80 00 f4 64 01 00 09 14 90 41 90 7c d3 08 24 80 41 | r........s........d.....A.|..$.A |
| 4b00 | d8 07 08 88 41 82 76 90 11 90 61 92 16 d8 0f 10 88 08 d9 07 0f 90 51 98 11 91 55 98 61 92 5a a0 | ....A.v...a...........Q...U.a.Z. |
| 4b20 | 31 a0 71 a2 35 a8 41 b0 01 aa 45 d8 0e 48 88 03 dc 0e 1b 98 43 d3 0e 20 d0 08 20 e0 08 09 88 41 | 1.q.5.A...E..H......C..........A |
| 4b40 | 89 05 80 41 dc 0b 10 90 11 90 51 91 15 8b 3c 80 44 dc 0b 10 90 11 90 51 91 15 8b 3c 80 44 e4 10 | ...A......Q...<.D......Q...<.D.. |
| 4b60 | 4b a8 74 d4 10 4b 80 49 db 10 58 a8 74 b0 42 b0 51 a8 78 d4 10 58 80 49 d8 04 05 d7 04 14 d1 04 | K.t..K.I..X.t.B.Q.x..X.I........ |
| 4b80 | 14 90 59 d4 04 1f d8 04 05 d7 04 14 d1 04 14 90 59 d4 04 1f e0 04 05 87 4d 81 4d 90 31 90 61 98 | ..Y.............Y.......M.M.1.a. |
| 4ba0 | 21 91 65 90 2a d4 04 1d d8 04 05 87 4d 81 4d 90 31 90 71 98 31 91 75 a0 11 a0 51 a1 15 d1 16 27 | !.e.*.......M.M.1.q.1.u...Q....' |
| 4bc0 | d0 12 28 d4 04 29 f5 06 00 05 3c e1 07 0f d8 11 15 90 62 90 71 90 18 f2 00 01 09 34 88 41 d9 10 | ..(..)....<.......b.q......4.A.. |
| 4be0 | 20 a0 11 a0 51 a8 01 a0 46 a8 51 b0 01 a8 46 d3 10 33 89 41 f0 03 01 09 34 e0 11 15 90 61 90 62 | ....Q...F.Q...F..3.A....4....a.b |
| 4c00 | 90 18 f2 00 01 09 38 88 41 d9 10 20 a0 11 a0 51 a8 01 a0 46 a8 51 b0 01 b0 41 b1 05 a8 4a d3 10 | ......8.A......Q...F.Q...A...J.. |
| 4c20 | 37 89 41 f0 03 01 09 38 e0 11 15 90 61 98 01 90 19 f2 00 01 09 34 88 41 d9 10 20 a0 11 a0 51 a8 | 7.A....8....a........4.A......Q. |
| 4c40 | 01 a0 46 a8 51 b0 01 a8 46 d3 10 33 89 41 f0 03 01 09 34 e0 08 09 8f 0d 89 0d 90 71 98 21 90 66 | ..F.Q...F..3.A....4........q.!.f |
| 4c60 | d4 08 1d f3 06 00 0a 29 90 54 d4 09 28 80 42 db 09 28 90 54 d4 09 28 80 42 db 09 53 c0 04 d4 09 | .......).T..(.B..(.T..(.B..S.... |
| 4c80 | 53 80 42 dc 08 0c 88 51 8b 07 90 21 89 0b 80 41 d9 07 0f dc 0d 3f a8 44 d4 0d 3f 89 02 e4 0d 30 | S.B....Q...!...A.....?.D..?....0 |
| 4ca0 | 98 54 d4 0d 30 88 02 e4 2c 2f b0 02 b0 42 b8 02 b8 42 d3 2c 3f d7 0a 4f d1 0a 4f 99 6a 98 61 a0 | .T..0...,/...B...B.,?..O..O.j.a. |
| 4cc0 | 11 a0 41 a0 71 c0 41 c0 71 c0 36 c8 51 c2 3b 88 41 88 71 88 36 90 41 90 71 90 36 89 3e d0 0a 4f | ..A.q.A.q.6.Q.;.A.q.6.A.q.6.>..O |
| 4ce0 | 80 43 d3 0a 4f dc 04 17 98 01 98 33 a0 05 d4 04 26 d8 0b 0c 80 48 f9 f5 05 00 0b 50 01 73 0c 00 | .C..O......3....&....H.....P.s.. |
| 4d00 | 00 00 c6 0f 10 46 3d 0a c6 20 09 46 3d 0a 29 02 46 4e 29 01 46 29 03 46 54 4e 29 1c da 07 5f 5f | .....F=....F=.).FN).F).FTN)...__ |
| 4d20 | 64 6f 63 5f 5f da 09 69 74 65 72 74 6f 6f 6c 73 72 03 00 00 00 da 04 6d 61 74 68 72 04 00 00 00 | doc__..itertoolsr......mathr.... |
| 4d40 | da 08 6e 65 74 77 6f 72 6b 78 da 02 6e 78 da 10 6e 65 74 77 6f 72 6b 78 2e 63 6c 61 73 73 65 73 | ..networkx..nx..networkx.classes |
| 4d60 | 72 05 00 00 00 da 12 6e 65 74 77 6f 72 6b 78 2e 65 78 63 65 70 74 69 6f 6e 72 06 00 00 00 da 1b | r......networkx.exceptionr...... |
| 4d80 | 6e 65 74 77 6f 72 6b 78 2e 67 65 6e 65 72 61 74 6f 72 73 2e 63 6c 61 73 73 69 63 72 07 00 00 00 | networkx.generators.classicr.... |
| 4da0 | 72 08 00 00 00 72 09 00 00 00 da 10 6e 65 74 77 6f 72 6b 78 2e 72 65 6c 61 62 65 6c 72 0a 00 00 | r....r......networkx.relabelr... |
| 4dc0 | 00 da 0e 6e 65 74 77 6f 72 6b 78 2e 75 74 69 6c 73 72 0b 00 00 00 72 0c 00 00 00 72 0d 00 00 00 | ...networkx.utilsr....r....r.... |
| 4de0 | da 07 5f 5f 61 6c 6c 5f 5f da 0d 5f 64 69 73 70 61 74 63 68 61 62 6c 65 72 0e 00 00 00 72 0f 00 | ..__all__.._dispatchabler....r.. |
| 4e00 | 00 00 72 10 00 00 00 72 11 00 00 00 72 12 00 00 00 72 19 00 00 00 72 4b 00 00 00 72 1e 00 00 00 | ..r....r....r....r....rK...r.... |
| 4e20 | fa 08 3c 6d 6f 64 75 6c 65 3e 72 8e 00 00 00 01 00 00 00 73 fe 00 00 00 f0 03 01 01 01 f1 02 0d | ..<module>r........s............ |
| 4e40 | 01 04 f5 1e 00 01 1d dd 00 15 e3 00 15 dd 00 30 dd 00 2c df 00 4c d1 00 4c dd 00 2a df 00 3d d1 | ...............0..,..L..L..*..=. |
| 4e60 | 00 3d f2 04 06 0b 02 80 07 f0 12 00 02 12 80 12 d7 01 11 d1 01 11 98 14 a8 54 d4 01 32 d9 01 10 | .=.......................T..2... |
| 4e80 | 90 21 90 51 90 16 d3 01 18 f2 02 31 01 0d f3 03 00 02 19 f3 03 00 02 33 f0 04 31 01 0d f0 68 01 | .!.Q.......1...........3..1...h. |
| 4ea0 | 00 02 12 80 12 d7 01 11 d1 01 11 98 14 a8 54 d4 01 32 f2 02 35 01 0d f3 03 00 02 33 f0 02 35 01 | ..............T..2..5......3..5. |
| 4ec0 | 0d f0 70 01 00 02 12 80 12 d7 01 11 d1 01 11 98 14 a8 54 d4 01 32 f1 02 17 01 0d f3 03 00 02 33 | ..p...............T..2.........3 |
| 4ee0 | f0 02 17 01 0d f0 34 00 02 12 80 12 d7 01 11 d1 01 11 98 14 a8 54 d4 01 32 e0 3c 40 f2 03 61 01 | ......4..............T..2.<@..a. |
| 4f00 | 01 0d f3 03 00 02 33 f0 02 61 01 01 0d f0 48 03 00 02 12 80 12 d7 01 11 d1 01 11 98 14 a8 54 d4 | ......3..a....H...............T. |
| 4f20 | 01 32 e0 3c 40 f2 03 5c 01 01 0d f3 03 00 02 33 f1 02 5c 01 01 0d 72 4b 00 00 00 | .2.<@..\.......3..\...rK... |