diff options
| author | maszhongming <mingz5@illinois.edu> | 2025-09-16 15:15:29 -0500 |
|---|---|---|
| committer | maszhongming <mingz5@illinois.edu> | 2025-09-16 15:15:29 -0500 |
| commit | 73c194f304f827b55081b15524479f82a1b7d94c (patch) | |
| tree | 5e8660e421915420892c5eca18f1ad680f80a861 /kg_rag/rag_based_generation/Llama | |
Initial commit
Diffstat (limited to 'kg_rag/rag_based_generation/Llama')
5 files changed, 301 insertions, 0 deletions
diff --git a/kg_rag/rag_based_generation/Llama/run_drug_repurposing.py b/kg_rag/rag_based_generation/Llama/run_drug_repurposing.py new file mode 100644 index 0000000..0b8d2f0 --- /dev/null +++ b/kg_rag/rag_based_generation/Llama/run_drug_repurposing.py @@ -0,0 +1,60 @@ +''' +This script takes the drug repurposing style questions from the csv file and save the result as another csv file. +This script makes use of Llama model. +Before running this script, make sure to configure the filepaths in config.yaml file. +''' + +from langchain import PromptTemplate, LLMChain +from kg_rag.utility import * +import sys + +QUESTION_PATH = config_data["DRUG_REPURPOSING_PATH"] +SYSTEM_PROMPT = system_prompts["DRUG_REPURPOSING"] +CONTEXT_VOLUME = int(config_data["CONTEXT_VOLUME"]) +QUESTION_VS_CONTEXT_SIMILARITY_PERCENTILE_THRESHOLD = float(config_data["QUESTION_VS_CONTEXT_SIMILARITY_PERCENTILE_THRESHOLD"]) +QUESTION_VS_CONTEXT_MINIMUM_SIMILARITY = float(config_data["QUESTION_VS_CONTEXT_MINIMUM_SIMILARITY"]) +VECTOR_DB_PATH = config_data["VECTOR_DB_PATH"] +NODE_CONTEXT_PATH = config_data["NODE_CONTEXT_PATH"] +SENTENCE_EMBEDDING_MODEL_FOR_NODE_RETRIEVAL = config_data["SENTENCE_EMBEDDING_MODEL_FOR_NODE_RETRIEVAL"] +SENTENCE_EMBEDDING_MODEL_FOR_CONTEXT_RETRIEVAL = config_data["SENTENCE_EMBEDDING_MODEL_FOR_CONTEXT_RETRIEVAL"] +SAVE_PATH = config_data["SAVE_RESULTS_PATH"] +MODEL_NAME = config_data["LLAMA_MODEL_NAME"] +BRANCH_NAME = config_data["LLAMA_MODEL_BRANCH"] +CACHE_DIR = config_data["LLM_CACHE_DIR"] + + +save_name = "_".join(MODEL_NAME.split("/")[-1].split("-"))+"_drug_repurposing_questions_response.csv" + + +INSTRUCTION = "Context:\n\n{context} \n\nQuestion: {question}" + +vectorstore = load_chroma(VECTOR_DB_PATH, SENTENCE_EMBEDDING_MODEL_FOR_NODE_RETRIEVAL) +embedding_function_for_context_retrieval = load_sentence_transformer(SENTENCE_EMBEDDING_MODEL_FOR_CONTEXT_RETRIEVAL) +node_context_df = pd.read_csv(NODE_CONTEXT_PATH) + + + +def main(): + start_time = time.time() + llm = llama_model(MODEL_NAME, BRANCH_NAME, CACHE_DIR, max_new_tokens=1024) + template = get_prompt(INSTRUCTION, SYSTEM_PROMPT) + prompt = PromptTemplate(template=template, input_variables=["context", "question"]) + llm_chain = LLMChain(prompt=prompt, llm=llm) + question_df = pd.read_csv(QUESTION_PATH) + answer_list = [] + for index, row in question_df.iterrows(): + question = row["text"] + context = retrieve_context(question, vectorstore, embedding_function_for_context_retrieval, node_context_df, CONTEXT_VOLUME, QUESTION_VS_CONTEXT_SIMILARITY_PERCENTILE_THRESHOLD, QUESTION_VS_CONTEXT_MINIMUM_SIMILARITY) + output = llm_chain.run(context=context, question=question) + answer_list.append((row["disease_in_question"], row["refDisease"], row["compoundGroundTruth"], row["text"], output)) + answer_df = pd.DataFrame(answer_list, columns=["disease_in_question", "refDisease", "compoundGroundTruth", "text", "llm_answer"]) + answer_df.to_csv(os.path.join(SAVE_PATH, save_name), index=False, header=True) + print("Completed in {} min".format((time.time()-start_time)/60)) + + + +if __name__ == "__main__": + main() + + + diff --git a/kg_rag/rag_based_generation/Llama/run_mcq_qa.py b/kg_rag/rag_based_generation/Llama/run_mcq_qa.py new file mode 100644 index 0000000..67ae43c --- /dev/null +++ b/kg_rag/rag_based_generation/Llama/run_mcq_qa.py @@ -0,0 +1,61 @@ +''' +This script takes the MCQ style questions from the csv file and save the result as another csv file. +This script makes use of Llama model. +Before running this script, make sure to configure the filepaths in config.yaml file. +''' +from tqdm import tqdm +from langchain import PromptTemplate, LLMChain +from kg_rag.utility import * + + +QUESTION_PATH = config_data["MCQ_PATH"] +SYSTEM_PROMPT = system_prompts["MCQ_QUESTION"] +CONTEXT_VOLUME = int(config_data["CONTEXT_VOLUME"]) +QUESTION_VS_CONTEXT_SIMILARITY_PERCENTILE_THRESHOLD = float(config_data["QUESTION_VS_CONTEXT_SIMILARITY_PERCENTILE_THRESHOLD"]) +QUESTION_VS_CONTEXT_MINIMUM_SIMILARITY = float(config_data["QUESTION_VS_CONTEXT_MINIMUM_SIMILARITY"]) +VECTOR_DB_PATH = config_data["VECTOR_DB_PATH"] +NODE_CONTEXT_PATH = config_data["NODE_CONTEXT_PATH"] +SENTENCE_EMBEDDING_MODEL_FOR_NODE_RETRIEVAL = config_data["SENTENCE_EMBEDDING_MODEL_FOR_NODE_RETRIEVAL"] +SENTENCE_EMBEDDING_MODEL_FOR_CONTEXT_RETRIEVAL = config_data["SENTENCE_EMBEDDING_MODEL_FOR_CONTEXT_RETRIEVAL"] +SAVE_PATH = config_data["SAVE_RESULTS_PATH"] +MODEL_NAME = config_data["LLAMA_MODEL_NAME"] +BRANCH_NAME = config_data["LLAMA_MODEL_BRANCH"] +CACHE_DIR = config_data["LLM_CACHE_DIR"] + +save_name = "_".join(MODEL_NAME.split("/")[-1].split("-"))+"_kg_rag_based_mcq_from_monarch_and_robokop_response.csv" + + +INSTRUCTION = "Context:\n\n{context} \n\nQuestion: {question}" + +vectorstore = load_chroma(VECTOR_DB_PATH, SENTENCE_EMBEDDING_MODEL_FOR_NODE_RETRIEVAL) +embedding_function_for_context_retrieval = load_sentence_transformer(SENTENCE_EMBEDDING_MODEL_FOR_CONTEXT_RETRIEVAL) +node_context_df = pd.read_csv(NODE_CONTEXT_PATH) +edge_evidence = False + + + +def main(): + start_time = time.time() + llm = llama_model(MODEL_NAME, BRANCH_NAME, CACHE_DIR) + template = get_prompt(INSTRUCTION, SYSTEM_PROMPT) + prompt = PromptTemplate(template=template, input_variables=["context", "question"]) + llm_chain = LLMChain(prompt=prompt, llm=llm) + question_df = pd.read_csv(QUESTION_PATH) + answer_list = [] + for index, row in tqdm(question_df.iterrows()): + question = row["text"] + context = retrieve_context(question, vectorstore, embedding_function_for_context_retrieval, node_context_df, CONTEXT_VOLUME, QUESTION_VS_CONTEXT_SIMILARITY_PERCENTILE_THRESHOLD, QUESTION_VS_CONTEXT_MINIMUM_SIMILARITY, edge_evidence) + output = llm_chain.run(context=context, question=question) + answer_list.append((row["text"], row["correct_node"], output)) + answer_df = pd.DataFrame(answer_list, columns=["question", "correct_answer", "llm_answer"]) + answer_df.to_csv(os.path.join(SAVE_PATH, save_name), index=False, header=True) + print("Completed in {} min".format((time.time()-start_time)/60)) + + + + + +if __name__ == "__main__": + main() + + diff --git a/kg_rag/rag_based_generation/Llama/run_mcq_qa_medgpt.py b/kg_rag/rag_based_generation/Llama/run_mcq_qa_medgpt.py new file mode 100644 index 0000000..813b601 --- /dev/null +++ b/kg_rag/rag_based_generation/Llama/run_mcq_qa_medgpt.py @@ -0,0 +1,61 @@ +''' +This script takes the MCQ style questions from the csv file and save the result as another csv file. +This script makes use of Llama model. +Before running this script, make sure to configure the filepaths in config.yaml file. +''' + +from langchain import PromptTemplate, LLMChain +from kg_rag.utility import * + + +QUESTION_PATH = config_data["MCQ_PATH"] +SYSTEM_PROMPT = system_prompts["MCQ_QUESTION"] +CONTEXT_VOLUME = int(config_data["CONTEXT_VOLUME"]) +QUESTION_VS_CONTEXT_SIMILARITY_PERCENTILE_THRESHOLD = float(config_data["QUESTION_VS_CONTEXT_SIMILARITY_PERCENTILE_THRESHOLD"]) +QUESTION_VS_CONTEXT_MINIMUM_SIMILARITY = float(config_data["QUESTION_VS_CONTEXT_MINIMUM_SIMILARITY"]) +VECTOR_DB_PATH = config_data["VECTOR_DB_PATH"] +NODE_CONTEXT_PATH = config_data["NODE_CONTEXT_PATH"] +SENTENCE_EMBEDDING_MODEL_FOR_NODE_RETRIEVAL = config_data["SENTENCE_EMBEDDING_MODEL_FOR_NODE_RETRIEVAL"] +SENTENCE_EMBEDDING_MODEL_FOR_CONTEXT_RETRIEVAL = config_data["SENTENCE_EMBEDDING_MODEL_FOR_CONTEXT_RETRIEVAL"] +SAVE_PATH = config_data["SAVE_RESULTS_PATH"] +MODEL_NAME = 'PharMolix/BioMedGPT-LM-7B' +BRANCH_NAME = 'main' +CACHE_DIR = config_data["LLM_CACHE_DIR"] + +save_name = "_".join(MODEL_NAME.split("/")[-1].split("-"))+"_kg_rag_based_mcq_from_monarch_and_robokop_response.csv" + + +INSTRUCTION = "Context:\n\n{context} \n\nQuestion: {question}" + +vectorstore = load_chroma(VECTOR_DB_PATH, SENTENCE_EMBEDDING_MODEL_FOR_NODE_RETRIEVAL) +embedding_function_for_context_retrieval = load_sentence_transformer(SENTENCE_EMBEDDING_MODEL_FOR_CONTEXT_RETRIEVAL) +node_context_df = pd.read_csv(NODE_CONTEXT_PATH) +edge_evidence = False + + +def main(): + start_time = time.time() + llm = llama_model(MODEL_NAME, BRANCH_NAME, CACHE_DIR) + template = get_prompt(INSTRUCTION, SYSTEM_PROMPT) + prompt = PromptTemplate(template=template, input_variables=["context", "question"]) + llm_chain = LLMChain(prompt=prompt, llm=llm) + question_df = pd.read_csv(QUESTION_PATH) + question_df = question_df.sample(50, random_state=40) + answer_list = [] + for index, row in question_df.iterrows(): + question = row["text"] + context = retrieve_context(question, vectorstore, embedding_function_for_context_retrieval, node_context_df, CONTEXT_VOLUME, QUESTION_VS_CONTEXT_SIMILARITY_PERCENTILE_THRESHOLD, QUESTION_VS_CONTEXT_MINIMUM_SIMILARITY, edge_evidence) + output = llm_chain.run(context=context, question=question) + answer_list.append((row["text"], row["correct_node"], output)) + answer_df = pd.DataFrame(answer_list, columns=["question", "correct_answer", "llm_answer"]) + answer_df.to_csv(os.path.join(SAVE_PATH, save_name), index=False, header=True) + print("Completed in {} min".format((time.time()-start_time)/60)) + + + + + +if __name__ == "__main__": + main() + + diff --git a/kg_rag/rag_based_generation/Llama/run_true_false_generation.py b/kg_rag/rag_based_generation/Llama/run_true_false_generation.py new file mode 100644 index 0000000..fa1a37d --- /dev/null +++ b/kg_rag/rag_based_generation/Llama/run_true_false_generation.py @@ -0,0 +1,59 @@ +''' +This script takes the True/False style questions from the csv file and save the result as another csv file. +This script makes use of Llama model. +Before running this script, make sure to configure the filepaths in config.yaml file. +''' + +from langchain import PromptTemplate, LLMChain +from kg_rag.utility import * +import sys + + +QUESTION_PATH = config_data["TRUE_FALSE_PATH"] +SYSTEM_PROMPT = system_prompts["TRUE_FALSE_QUESTION"] +QUESTION_VS_CONTEXT_SIMILARITY_PERCENTILE_THRESHOLD = float(config_data["QUESTION_VS_CONTEXT_SIMILARITY_PERCENTILE_THRESHOLD"]) +QUESTION_VS_CONTEXT_MINIMUM_SIMILARITY = float(config_data["QUESTION_VS_CONTEXT_MINIMUM_SIMILARITY"]) +VECTOR_DB_PATH = config_data["VECTOR_DB_PATH"] +NODE_CONTEXT_PATH = config_data["NODE_CONTEXT_PATH"] +SENTENCE_EMBEDDING_MODEL_FOR_NODE_RETRIEVAL = config_data["SENTENCE_EMBEDDING_MODEL_FOR_NODE_RETRIEVAL"] +SENTENCE_EMBEDDING_MODEL_FOR_CONTEXT_RETRIEVAL = config_data["SENTENCE_EMBEDDING_MODEL_FOR_CONTEXT_RETRIEVAL"] +SAVE_PATH = config_data["SAVE_RESULTS_PATH"] +MODEL_NAME = config_data["LLAMA_MODEL_NAME"] +BRANCH_NAME = config_data["LLAMA_MODEL_BRANCH"] +CACHE_DIR = config_data["LLM_CACHE_DIR"] +CONTEXT_VOLUME = 100 +edge_evidence = False + +save_name = "_".join(MODEL_NAME.split("/")[-1].split("-"))+"_kg_rag_based_true_false_binary_response.csv" + + +INSTRUCTION = "Context:\n\n{context} \n\nQuestion: {question}" + +vectorstore = load_chroma(VECTOR_DB_PATH, SENTENCE_EMBEDDING_MODEL_FOR_NODE_RETRIEVAL) +embedding_function_for_context_retrieval = load_sentence_transformer(SENTENCE_EMBEDDING_MODEL_FOR_CONTEXT_RETRIEVAL) +node_context_df = pd.read_csv(NODE_CONTEXT_PATH) + + +def main(): + start_time = time.time() + llm = llama_model(MODEL_NAME, BRANCH_NAME, CACHE_DIR) + template = get_prompt(INSTRUCTION, SYSTEM_PROMPT) + prompt = PromptTemplate(template=template, input_variables=["context", "question"]) + llm_chain = LLMChain(prompt=prompt, llm=llm) + question_df = pd.read_csv(QUESTION_PATH) + answer_list = [] + for index, row in question_df.iterrows(): + question = row["text"] + context = retrieve_context(question, vectorstore, embedding_function_for_context_retrieval, node_context_df, CONTEXT_VOLUME, QUESTION_VS_CONTEXT_SIMILARITY_PERCENTILE_THRESHOLD, QUESTION_VS_CONTEXT_MINIMUM_SIMILARITY, edge_evidence) + output = llm_chain.run(context=context, question=question) + answer_list.append((row["text"], row["label"], output)) + answer_df = pd.DataFrame(answer_list, columns=["question", "label", "llm_answer"]) + answer_df.to_csv(os.path.join(SAVE_PATH, save_name), index=False, header=True) + print("Completed in {} min".format((time.time()-start_time)/60)) + + + +if __name__ == "__main__": + main() + +
\ No newline at end of file diff --git a/kg_rag/rag_based_generation/Llama/text_generation.py b/kg_rag/rag_based_generation/Llama/text_generation.py new file mode 100644 index 0000000..2824135 --- /dev/null +++ b/kg_rag/rag_based_generation/Llama/text_generation.py @@ -0,0 +1,60 @@ +from langchain import PromptTemplate, LLMChain +from kg_rag.utility import * +import argparse + + + +parser = argparse.ArgumentParser() +parser.add_argument('-i', type=bool, default=False, help='Flag for interactive mode') +parser.add_argument('-m', type=str, default='method-1', help='Method to choose for Llama model') +parser.add_argument('-e', type=bool, default=False, help='Flag for showing evidence of association from the graph') +args = parser.parse_args() + +INTERACTIVE = args.i +METHOD = args.m +EDGE_EVIDENCE = bool(args.e) + + +SYSTEM_PROMPT = system_prompts["KG_RAG_BASED_TEXT_GENERATION"] +CONTEXT_VOLUME = int(config_data["CONTEXT_VOLUME"]) +QUESTION_VS_CONTEXT_SIMILARITY_PERCENTILE_THRESHOLD = float(config_data["QUESTION_VS_CONTEXT_SIMILARITY_PERCENTILE_THRESHOLD"]) +QUESTION_VS_CONTEXT_MINIMUM_SIMILARITY = float(config_data["QUESTION_VS_CONTEXT_MINIMUM_SIMILARITY"]) +VECTOR_DB_PATH = config_data["VECTOR_DB_PATH"] +NODE_CONTEXT_PATH = config_data["NODE_CONTEXT_PATH"] +SENTENCE_EMBEDDING_MODEL_FOR_NODE_RETRIEVAL = config_data["SENTENCE_EMBEDDING_MODEL_FOR_NODE_RETRIEVAL"] +SENTENCE_EMBEDDING_MODEL_FOR_CONTEXT_RETRIEVAL = config_data["SENTENCE_EMBEDDING_MODEL_FOR_CONTEXT_RETRIEVAL"] +MODEL_NAME = config_data["LLAMA_MODEL_NAME"] +BRANCH_NAME = config_data["LLAMA_MODEL_BRANCH"] +CACHE_DIR = config_data["LLM_CACHE_DIR"] + + +INSTRUCTION = "Context:\n\n{context} \n\nQuestion: {question}" + +vectorstore = load_chroma(VECTOR_DB_PATH, SENTENCE_EMBEDDING_MODEL_FOR_NODE_RETRIEVAL) +embedding_function_for_context_retrieval = load_sentence_transformer(SENTENCE_EMBEDDING_MODEL_FOR_CONTEXT_RETRIEVAL) +node_context_df = pd.read_csv(NODE_CONTEXT_PATH) + +def main(): + print(" ") + question = input("Enter your question : ") + if not INTERACTIVE: + template = get_prompt(INSTRUCTION, SYSTEM_PROMPT) + prompt = PromptTemplate(template=template, input_variables=["context", "question"]) + llm = llama_model(MODEL_NAME, BRANCH_NAME, CACHE_DIR, stream=True, method=METHOD) + llm_chain = LLMChain(prompt=prompt, llm=llm) + print("Retrieving context from SPOKE graph...") + context = retrieve_context(question, vectorstore, embedding_function_for_context_retrieval, node_context_df, CONTEXT_VOLUME, QUESTION_VS_CONTEXT_SIMILARITY_PERCENTILE_THRESHOLD, QUESTION_VS_CONTEXT_MINIMUM_SIMILARITY, EDGE_EVIDENCE) + print("Here is the KG-RAG based answer using Llama:") + print("") + output = llm_chain.run(context=context, question=question) + else: + interactive(question, vectorstore, node_context_df, embedding_function_for_context_retrieval, "llama", EDGE_EVIDENCE, SYSTEM_PROMPT, llama_method=METHOD) + + + + + + + +if __name__ == "__main__": + main() |
