diff options
Diffstat (limited to 'kg_rag/rag_based_generation/GPT/text_generation.py')
| -rw-r--r-- | kg_rag/rag_based_generation/GPT/text_generation.py | 61 |
1 files changed, 61 insertions, 0 deletions
diff --git a/kg_rag/rag_based_generation/GPT/text_generation.py b/kg_rag/rag_based_generation/GPT/text_generation.py new file mode 100644 index 0000000..f2fcee1 --- /dev/null +++ b/kg_rag/rag_based_generation/GPT/text_generation.py @@ -0,0 +1,61 @@ +''' +This script takes a question from the user in an interactive fashion and returns the KG-RAG based response in real time +Before running this script, make sure to configure config.yaml file. +Command line argument should be either 'gpt-4' or 'gpt-35-turbo' +''' + +from kg_rag.utility import * +import argparse + + + +parser = argparse.ArgumentParser() +parser.add_argument('-g', type=str, default='gpt-35-turbo', help='GPT model selection') +parser.add_argument('-i', type=bool, default=False, help='Flag for interactive mode') +parser.add_argument('-e', type=bool, default=False, help='Flag for showing evidence of association from the graph') +args = parser.parse_args() + +CHAT_MODEL_ID = args.g +INTERACTIVE = args.i +EDGE_EVIDENCE = bool(args.e) + + +SYSTEM_PROMPT = system_prompts["KG_RAG_BASED_TEXT_GENERATION"] +CONTEXT_VOLUME = int(config_data["CONTEXT_VOLUME"]) +QUESTION_VS_CONTEXT_SIMILARITY_PERCENTILE_THRESHOLD = float(config_data["QUESTION_VS_CONTEXT_SIMILARITY_PERCENTILE_THRESHOLD"]) +QUESTION_VS_CONTEXT_MINIMUM_SIMILARITY = float(config_data["QUESTION_VS_CONTEXT_MINIMUM_SIMILARITY"]) +VECTOR_DB_PATH = config_data["VECTOR_DB_PATH"] +NODE_CONTEXT_PATH = config_data["NODE_CONTEXT_PATH"] +SENTENCE_EMBEDDING_MODEL_FOR_NODE_RETRIEVAL = config_data["SENTENCE_EMBEDDING_MODEL_FOR_NODE_RETRIEVAL"] +SENTENCE_EMBEDDING_MODEL_FOR_CONTEXT_RETRIEVAL = config_data["SENTENCE_EMBEDDING_MODEL_FOR_CONTEXT_RETRIEVAL"] +TEMPERATURE = config_data["LLM_TEMPERATURE"] + + +CHAT_DEPLOYMENT_ID = CHAT_MODEL_ID if openai.api_type == "azure" else None + + +vectorstore = load_chroma(VECTOR_DB_PATH, SENTENCE_EMBEDDING_MODEL_FOR_NODE_RETRIEVAL) +embedding_function_for_context_retrieval = load_sentence_transformer(SENTENCE_EMBEDDING_MODEL_FOR_CONTEXT_RETRIEVAL) +node_context_df = pd.read_csv(NODE_CONTEXT_PATH) + +def main(): + print(" ") + question = input("Enter your question : ") + if not INTERACTIVE: + print("Retrieving context from SPOKE graph...") + context = retrieve_context(question, vectorstore, embedding_function_for_context_retrieval, node_context_df, CONTEXT_VOLUME, QUESTION_VS_CONTEXT_SIMILARITY_PERCENTILE_THRESHOLD, QUESTION_VS_CONTEXT_MINIMUM_SIMILARITY, EDGE_EVIDENCE) + print("Here is the KG-RAG based answer:") + print("") + enriched_prompt = "Context: "+ context + "\n" + "Question: " + question + output = get_GPT_response(enriched_prompt, SYSTEM_PROMPT, CHAT_MODEL_ID, CHAT_DEPLOYMENT_ID, temperature=TEMPERATURE) + stream_out(output) + else: + interactive(question, vectorstore, node_context_df, embedding_function_for_context_retrieval, CHAT_MODEL_ID, EDGE_EVIDENCE, SYSTEM_PROMPT) + + + +if __name__ == "__main__": + main() + + + |
