summaryrefslogtreecommitdiff
path: root/scripts/run_hag.py
diff options
context:
space:
mode:
Diffstat (limited to 'scripts/run_hag.py')
-rw-r--r--scripts/run_hag.py79
1 files changed, 79 insertions, 0 deletions
diff --git a/scripts/run_hag.py b/scripts/run_hag.py
new file mode 100644
index 0000000..4cacd1a
--- /dev/null
+++ b/scripts/run_hag.py
@@ -0,0 +1,79 @@
+"""Run HAG (Hopfield-Augmented Generation) on a question.
+
+Usage:
+ python scripts/run_hag.py --config configs/default.yaml --memory-bank data/memory_bank.pt --question "Who wrote Hamlet?"
+"""
+
+import argparse
+import logging
+
+import yaml
+
+from hag.config import (
+ EncoderConfig,
+ GeneratorConfig,
+ HopfieldConfig,
+ MemoryBankConfig,
+ PipelineConfig,
+)
+from hag.encoder import Encoder
+from hag.generator import Generator
+from hag.memory_bank import MemoryBank
+from hag.pipeline import RAGPipeline
+
+logging.basicConfig(level=logging.INFO)
+logger = logging.getLogger(__name__)
+
+
+def main() -> None:
+ parser = argparse.ArgumentParser(description="Run HAG")
+ parser.add_argument("--config", type=str, default="configs/default.yaml")
+ parser.add_argument("--memory-bank", type=str, required=True)
+ parser.add_argument("--question", type=str, required=True)
+ parser.add_argument("--beta", type=float, default=None)
+ parser.add_argument("--max-iter", type=int, default=None)
+ parser.add_argument("--top-k", type=int, default=None)
+ args = parser.parse_args()
+
+ with open(args.config) as f:
+ cfg = yaml.safe_load(f)
+
+ hopfield_cfg = cfg.get("hopfield", {})
+ if args.beta is not None:
+ hopfield_cfg["beta"] = args.beta
+ if args.max_iter is not None:
+ hopfield_cfg["max_iter"] = args.max_iter
+ if args.top_k is not None:
+ hopfield_cfg["top_k"] = args.top_k
+
+ pipeline_config = PipelineConfig(
+ hopfield=HopfieldConfig(**hopfield_cfg),
+ memory=MemoryBankConfig(**cfg.get("memory", {})),
+ encoder=EncoderConfig(**cfg.get("encoder", {})),
+ generator=GeneratorConfig(**cfg.get("generator", {})),
+ retriever_type="hopfield",
+ )
+
+ mb = MemoryBank(pipeline_config.memory)
+ mb.load(args.memory_bank)
+
+ encoder = Encoder(pipeline_config.encoder)
+ generator = Generator(pipeline_config.generator)
+
+ pipeline = RAGPipeline(
+ config=pipeline_config,
+ encoder=encoder,
+ generator=generator,
+ memory_bank=mb,
+ )
+
+ result = pipeline.run(args.question)
+ print(f"\nQuestion: {result.question}")
+ print(f"Answer: {result.answer}")
+ print(f"\nRetrieved passages:")
+ for i, p in enumerate(result.retrieved_passages):
+ print(f" [{i+1}] {p[:200]}...")
+
+
+if __name__ == "__main__":
+ main()