1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
|
"""Wrapper for encoding queries and passages into embeddings."""
import logging
from typing import List, Union
import torch
from hag.config import EncoderConfig
logger = logging.getLogger(__name__)
class Encoder:
"""Encodes text queries/passages into dense embeddings.
Uses a HuggingFace transformer model (e.g., Contriever).
For testing, use FakeEncoder instead.
"""
def __init__(self, config: EncoderConfig) -> None:
self.config = config
self._tokenizer = None
self._model = None
def _load_model(self) -> None:
"""Lazy-load the model and tokenizer."""
from transformers import AutoModel, AutoTokenizer
logger.info("Loading encoder model: %s", self.config.model_name)
self._tokenizer = AutoTokenizer.from_pretrained(self.config.model_name)
self._model = AutoModel.from_pretrained(self.config.model_name)
self._model.eval()
@torch.no_grad()
def encode(self, texts: Union[str, List[str]]) -> torch.Tensor:
"""Encode text(s) into embedding(s).
Args:
texts: single string or list of strings
Returns:
(1, d) tensor for single input, (N, d) for list input.
"""
if self._model is None:
self._load_model()
if isinstance(texts, str):
texts = [texts]
inputs = self._tokenizer(
texts,
max_length=self.config.max_length,
padding=True,
truncation=True,
return_tensors="pt",
)
outputs = self._model(**inputs)
# Mean pooling over token embeddings
embeddings = outputs.last_hidden_state.mean(dim=1) # (N, d)
return embeddings
class FakeEncoder:
"""Deterministic hash-based encoder for testing. No model download needed."""
def __init__(self, dim: int = 64) -> None:
self.dim = dim
def encode(self, texts: Union[str, List[str]]) -> torch.Tensor:
"""Produce deterministic embeddings based on text hash.
Args:
texts: single string or list of strings
Returns:
(1, d) or (N, d) normalized tensor.
"""
if isinstance(texts, str):
texts = [texts]
embeddings = []
for text in texts:
torch.manual_seed(hash(text) % 2**32)
emb = torch.randn(1, self.dim)
embeddings.append(emb)
result = torch.cat(embeddings, dim=0) # (N, d)
return torch.nn.functional.normalize(result, dim=-1)
|