1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
|
"""LLM generation wrapper for producing answers from retrieved context."""
import logging
from typing import List
from hag.config import GeneratorConfig
logger = logging.getLogger(__name__)
PROMPT_TEMPLATE = """Answer the following question based on the provided context passages.
Context:
{context}
Question: {question}
Answer:"""
class Generator:
"""LLM-based answer generator.
Uses a HuggingFace causal LM (e.g., Llama-3.1-8B-Instruct).
For testing, use FakeGenerator instead.
"""
def __init__(self, config: GeneratorConfig) -> None:
self.config = config
self._tokenizer = None
self._model = None
def _load_model(self) -> None:
"""Lazy-load the model and tokenizer."""
from transformers import AutoModelForCausalLM, AutoTokenizer
logger.info("Loading generator model: %s", self.config.model_name)
self._tokenizer = AutoTokenizer.from_pretrained(self.config.model_name)
self._model = AutoModelForCausalLM.from_pretrained(
self.config.model_name,
torch_dtype="auto",
)
self._model.eval()
def generate(self, question: str, passages: List[str]) -> str:
"""Generate an answer given a question and retrieved passages.
Args:
question: the user question
passages: list of retrieved passage texts
Returns:
Generated answer string.
"""
if self._model is None:
self._load_model()
context = "\n\n".join(
f"[{i+1}] {p}" for i, p in enumerate(passages)
)
prompt = PROMPT_TEMPLATE.format(context=context, question=question)
inputs = self._tokenizer(prompt, return_tensors="pt")
outputs = self._model.generate(
**inputs,
max_new_tokens=self.config.max_new_tokens,
temperature=self.config.temperature if self.config.temperature > 0 else None,
do_sample=self.config.temperature > 0,
)
# Decode only the generated tokens (skip the prompt)
generated = outputs[0][inputs["input_ids"].shape[1]:]
return self._tokenizer.decode(generated, skip_special_tokens=True).strip()
class FakeGenerator:
"""Deterministic mock generator for testing. No model download needed."""
def generate(self, question: str, passages: List[str]) -> str:
"""Return a mock answer.
Args:
question: the user question
passages: list of retrieved passages
Returns:
Mock answer string.
"""
return "mock answer"
|