1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
|
"""Analyze energy curves and convergence properties of Hopfield retrieval.
Usage:
python scripts/analyze_energy.py --config configs/default.yaml --memory-bank data/memory_bank.pt --questions data/questions.jsonl --output energy_analysis.json
"""
import argparse
import json
import logging
import torch
import yaml
from hag.config import EncoderConfig, HopfieldConfig, MemoryBankConfig
from hag.encoder import Encoder
from hag.energy import (
compute_attention_entropy,
compute_energy_curve,
compute_energy_gap,
verify_monotonic_decrease,
)
from hag.hopfield import HopfieldRetrieval
from hag.memory_bank import MemoryBank
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
def main() -> None:
parser = argparse.ArgumentParser(description="Analyze Hopfield energy curves")
parser.add_argument("--config", type=str, default="configs/default.yaml")
parser.add_argument("--memory-bank", type=str, required=True)
parser.add_argument("--questions", type=str, required=True)
parser.add_argument("--output", type=str, default="energy_analysis.json")
args = parser.parse_args()
with open(args.config) as f:
cfg = yaml.safe_load(f)
hopfield_config = HopfieldConfig(**cfg.get("hopfield", {}))
memory_config = MemoryBankConfig(**cfg.get("memory", {}))
encoder_config = EncoderConfig(**cfg.get("encoder", {}))
# Load memory bank
mb = MemoryBank(memory_config)
mb.load(args.memory_bank)
# Load questions
with open(args.questions) as f:
questions = [json.loads(line)["question"] for line in f]
encoder = Encoder(encoder_config)
hopfield = HopfieldRetrieval(hopfield_config)
analyses = []
for q in questions:
query_emb = encoder.encode(q) # (1, d)
result = hopfield.retrieve(
query_emb, mb.embeddings, return_energy=True, return_trajectory=True
)
curve = compute_energy_curve(result)
analyses.append({
"question": q,
"energy_curve": curve,
"energy_gap": compute_energy_gap(curve),
"monotonic": verify_monotonic_decrease(curve),
"num_steps": result.num_steps,
"attention_entropy": compute_attention_entropy(result.attention_weights),
})
with open(args.output, "w") as f:
json.dump(analyses, f, indent=2)
logger.info("Energy analysis saved to %s (%d questions)", args.output, len(analyses))
if __name__ == "__main__":
main()
|