summaryrefslogtreecommitdiff
path: root/scripts/analyze_energy.py
blob: fd044a4a1e3191f2791315aa04de355be953cab7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
"""Analyze energy curves and convergence properties of Hopfield retrieval.

Usage:
    python scripts/analyze_energy.py --config configs/default.yaml --memory-bank data/memory_bank.pt --questions data/questions.jsonl --output energy_analysis.json
"""

import argparse
import json
import logging

import torch
import yaml

from hag.config import EncoderConfig, HopfieldConfig, MemoryBankConfig
from hag.encoder import Encoder
from hag.energy import (
    compute_attention_entropy,
    compute_energy_curve,
    compute_energy_gap,
    verify_monotonic_decrease,
)
from hag.hopfield import HopfieldRetrieval
from hag.memory_bank import MemoryBank

logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)


def main() -> None:
    parser = argparse.ArgumentParser(description="Analyze Hopfield energy curves")
    parser.add_argument("--config", type=str, default="configs/default.yaml")
    parser.add_argument("--memory-bank", type=str, required=True)
    parser.add_argument("--questions", type=str, required=True)
    parser.add_argument("--output", type=str, default="energy_analysis.json")
    args = parser.parse_args()

    with open(args.config) as f:
        cfg = yaml.safe_load(f)

    hopfield_config = HopfieldConfig(**cfg.get("hopfield", {}))
    memory_config = MemoryBankConfig(**cfg.get("memory", {}))
    encoder_config = EncoderConfig(**cfg.get("encoder", {}))

    # Load memory bank
    mb = MemoryBank(memory_config)
    mb.load(args.memory_bank)

    # Load questions
    with open(args.questions) as f:
        questions = [json.loads(line)["question"] for line in f]

    encoder = Encoder(encoder_config)
    hopfield = HopfieldRetrieval(hopfield_config)

    analyses = []
    for q in questions:
        query_emb = encoder.encode(q)  # (1, d)
        result = hopfield.retrieve(
            query_emb, mb.embeddings, return_energy=True, return_trajectory=True
        )

        curve = compute_energy_curve(result)
        analyses.append({
            "question": q,
            "energy_curve": curve,
            "energy_gap": compute_energy_gap(curve),
            "monotonic": verify_monotonic_decrease(curve),
            "num_steps": result.num_steps,
            "attention_entropy": compute_attention_entropy(result.attention_weights),
        })

    with open(args.output, "w") as f:
        json.dump(analyses, f, indent=2)
    logger.info("Energy analysis saved to %s (%d questions)", args.output, len(analyses))


if __name__ == "__main__":
    main()