1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
|
"""Offline script: encode corpus passages into a memory bank.
Usage:
python scripts/build_memory_bank.py --config configs/default.yaml --corpus data/corpus.jsonl --output data/memory_bank.pt
"""
import argparse
import json
import logging
import torch
import yaml
from tqdm import tqdm
from hag.config import EncoderConfig, MemoryBankConfig
from hag.encoder import Encoder
from hag.memory_bank import MemoryBank
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
def load_corpus(path: str) -> list[str]:
"""Load passages from a JSONL file (one JSON object per line with 'text' field)."""
passages = []
with open(path) as f:
for line in f:
obj = json.loads(line)
passages.append(obj["text"])
return passages
def main() -> None:
parser = argparse.ArgumentParser(description="Build memory bank from corpus")
parser.add_argument("--config", type=str, default="configs/default.yaml")
parser.add_argument("--corpus", type=str, required=True)
parser.add_argument("--output", type=str, required=True)
parser.add_argument("--device", type=str, default="cpu")
args = parser.parse_args()
with open(args.config) as f:
cfg = yaml.safe_load(f)
encoder_config = EncoderConfig(**cfg.get("encoder", {}))
memory_config = MemoryBankConfig(**cfg.get("memory", {}))
# Load corpus
logger.info("Loading corpus from %s", args.corpus)
passages = load_corpus(args.corpus)
logger.info("Loaded %d passages", len(passages))
# Encode passages in batches
encoder = Encoder(encoder_config)
all_embeddings = []
for i in tqdm(range(0, len(passages), encoder_config.batch_size), desc="Encoding"):
batch = passages[i : i + encoder_config.batch_size]
emb = encoder.encode(batch) # (batch_size, d)
all_embeddings.append(emb.cpu())
embeddings = torch.cat(all_embeddings, dim=0) # (N, d)
logger.info("Encoded %d passages -> embeddings shape: %s", len(passages), embeddings.shape)
# Build and save memory bank
mb = MemoryBank(memory_config)
mb.build_from_embeddings(embeddings, passages)
mb.save(args.output)
logger.info("Memory bank saved to %s", args.output)
if __name__ == "__main__":
main()
|