1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
|
"""Run vanilla RAG baseline with FAISS retrieval.
Usage:
python scripts/run_baseline.py --config configs/default.yaml --memory-bank data/memory_bank.pt --question "Who wrote Hamlet?"
"""
import argparse
import logging
import torch
import yaml
from hag.config import EncoderConfig, GeneratorConfig, HopfieldConfig, PipelineConfig
from hag.encoder import Encoder
from hag.generator import Generator
from hag.memory_bank import MemoryBank
from hag.retriever_faiss import FAISSRetriever
from hag.pipeline import RAGPipeline
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
def main() -> None:
parser = argparse.ArgumentParser(description="Run vanilla RAG baseline")
parser.add_argument("--config", type=str, default="configs/default.yaml")
parser.add_argument("--memory-bank", type=str, required=True)
parser.add_argument("--question", type=str, required=True)
parser.add_argument("--top-k", type=int, default=5)
args = parser.parse_args()
with open(args.config) as f:
cfg = yaml.safe_load(f)
# Override retriever type to faiss
pipeline_config = PipelineConfig(
hopfield=HopfieldConfig(**{**cfg.get("hopfield", {}), "top_k": args.top_k}),
encoder=EncoderConfig(**cfg.get("encoder", {})),
generator=GeneratorConfig(**cfg.get("generator", {})),
retriever_type="faiss",
)
# Load memory bank to get embeddings for FAISS
from hag.config import MemoryBankConfig
mb = MemoryBank(MemoryBankConfig(**cfg.get("memory", {})))
mb.load(args.memory_bank)
# Build FAISS index from memory bank embeddings
import numpy as np
embeddings_np = mb.embeddings.T.numpy().astype(np.float32) # (N, d)
faiss_ret = FAISSRetriever(top_k=args.top_k)
faiss_ret.build_index(embeddings_np, mb.passages)
encoder = Encoder(pipeline_config.encoder)
generator = Generator(pipeline_config.generator)
pipeline = RAGPipeline(
config=pipeline_config,
encoder=encoder,
generator=generator,
faiss_retriever=faiss_ret,
)
result = pipeline.run(args.question)
print(f"\nQuestion: {result.question}")
print(f"Answer: {result.answer}")
print(f"\nRetrieved passages:")
for i, p in enumerate(result.retrieved_passages):
print(f" [{i+1}] {p[:200]}...")
if __name__ == "__main__":
main()
|