summaryrefslogtreecommitdiff
path: root/scripts/run_eval.py
blob: 713b3c2a452b000276b2ea1b8a356f98f3ef12c6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
"""Run evaluation on a dataset with either FAISS or Hopfield retrieval.

Usage:
    python scripts/run_eval.py --config configs/hotpotqa.yaml --memory-bank data/memory_bank.pt --dataset hotpotqa --split validation --max-samples 500
"""

import argparse
import json
import logging

import yaml

from hag.config import (
    EncoderConfig,
    GeneratorConfig,
    HopfieldConfig,
    MemoryBankConfig,
    PipelineConfig,
)
from hag.encoder import Encoder
from hag.generator import Generator
from hag.memory_bank import MemoryBank
from hag.metrics import evaluate_dataset
from hag.pipeline import RAGPipeline
from hag.retriever_faiss import FAISSRetriever

logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)


def main() -> None:
    parser = argparse.ArgumentParser(description="Run HAG/RAG evaluation")
    parser.add_argument("--config", type=str, default="configs/default.yaml")
    parser.add_argument("--memory-bank", type=str, required=True)
    parser.add_argument("--dataset", type=str, default="hotpotqa")
    parser.add_argument("--split", type=str, default="validation")
    parser.add_argument("--max-samples", type=int, default=500)
    parser.add_argument("--output", type=str, default="results.json")
    args = parser.parse_args()

    with open(args.config) as f:
        cfg = yaml.safe_load(f)

    pipeline_config = PipelineConfig(
        hopfield=HopfieldConfig(**cfg.get("hopfield", {})),
        memory=MemoryBankConfig(**cfg.get("memory", {})),
        encoder=EncoderConfig(**cfg.get("encoder", {})),
        generator=GeneratorConfig(**cfg.get("generator", {})),
        retriever_type=cfg.get("retriever_type", "hopfield"),
    )

    # Load memory bank
    mb = MemoryBank(pipeline_config.memory)
    mb.load(args.memory_bank)

    # Build pipeline
    encoder = Encoder(pipeline_config.encoder)
    generator = Generator(pipeline_config.generator)
    pipeline = RAGPipeline(
        config=pipeline_config,
        encoder=encoder,
        generator=generator,
        memory_bank=mb,
    )

    # Load dataset
    from datasets import load_dataset

    logger.info("Loading dataset: %s / %s", args.dataset, args.split)
    ds = load_dataset(args.dataset, split=args.split)
    if args.max_samples and len(ds) > args.max_samples:
        ds = ds.select(range(args.max_samples))

    questions = [ex["question"] for ex in ds]
    gold_answers = [ex["answer"] for ex in ds]

    # Run evaluation
    logger.info("Running evaluation on %d questions", len(questions))
    results = pipeline.run_batch(questions)
    metrics = evaluate_dataset(results, gold_answers)

    logger.info("Results: %s", metrics)

    with open(args.output, "w") as f:
        json.dump(metrics, f, indent=2)
    logger.info("Results saved to %s", args.output)


if __name__ == "__main__":
    main()