diff options
| author | LuyaoZhuang <zhuangluyao523@gmail.com> | 2025-10-27 05:12:14 -0400 |
|---|---|---|
| committer | LuyaoZhuang <zhuangluyao523@gmail.com> | 2025-10-27 05:12:14 -0400 |
| commit | 73c9af5c873cd4348ca9c0d2bf14d1faa76406ca (patch) | |
| tree | 2afd1bed4a85974246fd6c688506558be093f5d0 | |
| parent | 8ac0c5a714a77276985fd6bdb9c6f337598da551 (diff) | |
| parent | 9e191bf90952294085ed460e230f6d55cade56a8 (diff) | |
Merge branch 'main' of https://github.com/DEEP-PolyU/LinearRAG
| -rw-r--r-- | readme.md | 14 |
1 files changed, 8 insertions, 6 deletions
@@ -17,18 +17,20 @@ --- ## 🚀 **Highlights** -- ✅ **Relation-free Graph Construction**: Eliminates unstable relation extraction, using only lightweight entity recognition to graph. -- 🔥 **Zero Token Consumption**: Complete graph construction and retrieval without any LLM calls. -- 📊 **Strong Results**: Outperforms previous RAG methods on widely-used benchmarks. - +- ✅ **Context-Preserving**: A relation-free graph construction paradigm, relying on lightweight entity recognition and semantic linking to achieve comprehensive contextual comprehension. +- ✅ **Complex Reasoning**: Enables deep retrieval via semantic bridging, achieving multi-hop reasoning in a single retrieval pass without requiring an explicit relational graph. +- ✅ **High Scalability**: Zero LLM token consumption, faster processing speed, and linear time/space complexity. + <p align="center"> <img src="figure/main_figure.png" width="95%" alt="Framework Overview"> </p> --- ## 🎉 **News** -- [2025-10-26] We have released the code and [dataset](https://huggingface.co/datasets/Zly0523/linear-rag). -- [2025-10-11] We have released the paper on [Arxiv](https://arxiv.org/abs/2510.10114). +- **[2025-10-27]** We release **[LinearRAG](https://github.com/DEEP-PolyU/LinearRAG)**, a relation-free graph construction method for efficient GraphRAG. +- **[2025-06-06]** We release **[GraphRAG-Bench](https://github.com/GraphRAG-Bench/GraphRAG-Benchmark.git)**, the benchmark for evaluating GraphRAG models. +- **[2025-01-21]** We release the [GraphRAG survey](https://github.com/DEEP-PolyU/Awesome-GraphRAG). + --- |
