1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
|
import os
import requests
import feedparser
import datetime
from github import Github
from openai import OpenAI
ALLOWED_CATEGORIES = [
"cs.AI", "cs.CL", "cs.CV", "cs.LG", "cs.NE", "cs.RO",
"cs.IR", "stat.ML"
]
SYSTEM_PROMPT = (
"You are a helpful assistant. The user will give you a paper title and abstract. "
"Your task: Decide if this paper is about large language models (or generative text models) AND about bias/fairness. "
"If yes, respond with just a single character: 1. Otherwise, respond with a single character: 0. "
"No extra explanation, no punctuation—only the number."
)
def advanced_filter(entry):
title = getattr(entry, 'title', '').lower()
summary = getattr(entry, 'summary', '').lower()
full_text = title + " " + summary
general_terms = ["bias", "fairness"]
model_terms = ["llm", "language model", "transformer", "gpt", "nlp",
"pretrained", "embedding", "generation", "alignment", "ai"]
negative_terms = ["estimation", "variance", "quantum", "physics",
"sensor", "circuit", "electronics", "hardware"]
has_general = any(term in full_text for term in general_terms)
has_model = any(term in full_text for term in model_terms)
has_negative = any(term in full_text for term in negative_terms)
return (has_general and has_model) and (not has_negative)
def is_relevant_by_api(title, summary, client, model="gpt-4-turbo"):
prompt = f"Title: {title}\nAbstract: {summary}"
try:
dialogue = client.chat.completions.create(
model=model,
messages=[
{"role": "system", "content": SYSTEM_PROMPT},
{"role": "user", "content": prompt}
],
temperature=0.0,
max_tokens=1
)
response_msg = dialogue.choices[0].message.content.strip()
print(f"[DEBUG][API] return message='{response_msg}' for paper title='{title[:60]}...'")
return response_msg == "1"
except Exception as e:
print("[ERROR][API] calling OpenAI API:", e)
return False
def fetch_papers_combined(days=1):
now_utc = datetime.datetime.now(datetime.timezone.utc)
start_utc = now_utc - datetime.timedelta(days=days)
base_url = "http://export.arxiv.org/api/query"
step = 100
start = 0
all_entries = []
while True:
params = {
"search_query": "cat:cs.* OR cat:stat.ML",
"sortBy": "submittedDate",
"sortOrder": "descending",
"start": start,
"max_results": step
}
resp = requests.get(base_url, params=params, timeout=30)
if resp.status_code != 200:
print(f"[ERROR] Failed fetching from arXiv. Status code: {resp.status_code}")
break
feed = feedparser.parse(resp.content)
batch = feed.entries
if not batch:
break
# 本地过滤日期
for e in batch:
published_dt = datetime.datetime.strptime(e.published, "%Y-%m-%dT%H:%M:%SZ").replace(tzinfo=datetime.timezone.utc)
if published_dt < start_utc:
continue # 超出日期范围
all_entries.append(e)
if len(batch) < step:
break # 已经抓取到底了
start += step
if start >= 3000:
break
print(f"[DEBUG] arXiv returned total {len(all_entries)} papers after filtering by published date.")
local_candidates = [
{
"title": e.title,
"summary": e.summary,
"published": e.published,
"link": e.link,
"categories": [t.term for t in e.tags]
}
for e in all_entries
if any(cat in ALLOWED_CATEGORIES for cat in [t.term for t in e.tags]) and advanced_filter(e)
]
print(f"[DEBUG] Number of papers after local filtering: {len(local_candidates)}")
openai_api_key = os.getenv("OPENAI_API_KEY")
if not openai_api_key:
print("[WARNING] No OPENAI_API_KEY found. Skip second filter.")
return local_candidates
client = OpenAI(api_key=openai_api_key)
final_matched = []
for p in local_candidates:
if is_relevant_by_api(p["title"], p["summary"], client):
final_matched.append(p)
print(f"[DEBUG] Number of papers after OpenAI API filtering: {len(final_matched)}")
return final_matched
def update_readme_in_repo(papers, token, repo_name):
if not papers:
return
g = Github(token)
repo = g.get_repo(repo_name)
readme_file = repo.get_contents("README.md", ref="main")
old_content = readme_file.decoded_content.decode("utf-8")
now_utc_str = datetime.datetime.now(datetime.timezone.utc).strftime("%Y-%m-%d %H:%M UTC")
new_section = f"\n\n### Auto-captured papers on {now_utc_str}\n"
for p in papers:
cat_str = ", ".join(p["categories"])
new_section += f"- **{p['title']}** (Published={p['published']}) \n"
new_section += f" - Categories: {cat_str} \n"
new_section += f" - Link: {p['link']}\n\n"
updated_content = old_content + new_section
commit_msg = f"Auto update README with {len(papers)} new papers"
repo.update_file(
path="README.md",
message=commit_msg,
content=updated_content,
sha=readme_file.sha,
branch="main"
)
def main():
days = 1
print(f"[DEBUG] Starting fetch_papers_combined with days={days}")
papers = fetch_papers_combined(days=days)
print(f"[DEBUG] After fetch_papers_combined: {len(papers)} papers matched.")
if not papers:
print("[DEBUG] No papers matched after both local and API filters.")
github_token = os.getenv("TARGET_REPO_TOKEN")
target_repo_name = os.getenv("TARGET_REPO_NAME")
print(f"[DEBUG] Github Token Set: {'Yes' if github_token else 'No'}")
print(f"[DEBUG] Target Repo Name: {target_repo_name if target_repo_name else 'Not Set'}")
if github_token and target_repo_name and papers:
print("[DEBUG] Proceeding to update README in repo...")
update_readme_in_repo(papers, github_token, target_repo_name)
print("[DEBUG] README update completed.")
else:
print("[INFO] Skipped README update due to missing credentials or no papers matched.")
if __name__ == "__main__":
main()
|