1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
|
import os
import requests
import feedparser
import datetime
from github import Github
ALLOWED_CATEGORIES = [
"cs.AI", "cs.CL", "cs.CV", "cs.LG", "cs.NE", "cs.RO",
"cs.IR", "stat.ML"
]
def advanced_filter(entry):
"""
基于标题+摘要,本地进行“正面关键词 + 负面关键词”筛选
"""
title = getattr(entry, 'title', '').lower()
summary = getattr(entry, 'summary', '').lower()
full_text = title + " " + summary
# 正面关键词
general_terms = ["bias", "fairness"]
model_terms = ["llm", "language model", "transformer", "gpt", "nlp",
"pretrained", "embedding", "generation", "alignment", "ai"]
# 负面关键词
negative_terms = [
"estimation", "variance", "quantum", "physics",
"sensor", "circuit", "electronics", "hardware"
]
has_general = any(term in full_text for term in general_terms)
has_model = any(term in full_text for term in model_terms)
has_negative = any(term in full_text for term in negative_terms)
return (has_general and has_model) and (not has_negative)
API_URL = "https://uiuc.chat/api/chat-api/chat"
MODEL_NAME = "qwen2.5:14b-instruct-fp16"
SYSTEM_PROMPT = (
"Based on the given title and abstract, please determine if the paper "
"is relevant to both language models and bias (or fairness). "
"If yes, respond 1; otherwise respond 0."
)
def is_relevant_by_api(title, summary, api_key):
"""
调用外部API,根据title+summary判别是否相关(返回 True/False),
并打印调试信息。
"""
headers = {"Content-Type": "application/json"}
data = {
"model": MODEL_NAME,
"messages": [
{
"role": "system",
"content": SYSTEM_PROMPT
},
{
"role": "user",
"content": f"Title: {title}\nAbstract: {summary}"
}
],
"api_key": api_key,
"course_name": "llm-bias-papers",
"stream": False,
"temperature": 0.0
}
try:
resp = requests.post(API_URL, headers=headers, json=data, timeout=30)
resp.raise_for_status()
full_json = resp.json()
# 获取API返回的message
response_msg = full_json.get("message", "")
print(f"[DEBUG][API] return message='{response_msg.strip()}' for paper title='{title[:60]}...'")
return (response_msg.strip() == "1")
except Exception as e:
print("[ERROR][API] calling external API:", e)
return False
def fetch_papers_combined(days=1):
"""
1) 抓过去days天 arXiv论文(宽松)
2) 本地先过滤(分类 + advanced_filter)
3) 对“通过本地筛”的候选,调用API二次判定 + debug输出
"""
now_utc = datetime.datetime.now(datetime.timezone.utc)
start_utc = now_utc - datetime.timedelta(days=days)
start_str = start_utc.strftime("%Y%m%d%H%M")
end_str = now_utc.strftime("%Y%m%d%H%M")
print(f"[DEBUG] date range (UTC): {start_str} ~ {end_str}, days={days}")
search_query = f"submittedDate:[{start_str} TO {end_str}]"
base_url = "http://export.arxiv.org/api/query"
step = 100
start = 0
all_entries = []
while True:
params = {
"search_query": search_query,
"sortBy": "submittedDate",
"sortOrder": "descending",
"start": start,
"max_results": step
}
print(f"[DEBUG] fetching: {start} -> {start+step}")
try:
resp = requests.get(base_url, params=params, timeout=30)
if resp.status_code != 200:
print("[ERROR] HTTP Status:", resp.status_code)
break
feed = feedparser.parse(resp.content)
except Exception as e:
print("[ERROR] fetching arXiv:", e)
break
batch = feed.entries
got_count = len(batch)
print(f"[DEBUG] got {got_count} entries in this batch.")
if got_count == 0:
break
all_entries.extend(batch)
start += step
if start >= 3000:
print("[DEBUG] reached 3000, stop.")
break
print(f"[DEBUG] total retrieved in date range: {len(all_entries)}")
# --- 本地过滤1: 分类 + advanced_filter ---
local_candidates = []
for e in all_entries:
title = getattr(e, "title", "")
summary = getattr(e, "summary", "")
published = getattr(e, "published", "")
link = getattr(e, "link", "")
categories = [t.term for t in e.tags] if hasattr(e, 'tags') else []
if not any(cat in ALLOWED_CATEGORIES for cat in categories):
continue
if advanced_filter(e):
local_candidates.append({
"title": title,
"summary": summary,
"published": published,
"link": link,
"categories": categories
})
print(f"[DEBUG] local_candidates = {len(local_candidates)} after local filter")
# Debug: 打印所有local_candidates的标题,看看是不是你预期的那几篇
for idx, paper in enumerate(local_candidates, 1):
print(f"[DEBUG][LOCAL] #{idx}, title='{paper['title']}' cat={paper['categories']}")
# --- 2) 调API二次判定 ---
api_key = os.getenv("UIUC_API_KEY") # 你在Secrets中配置
if not api_key:
print("[WARNING] No UIUC_API_KEY found. Skip second filter.")
return local_candidates
final_matched = []
for idx, paper in enumerate(local_candidates, 1):
relevant = is_relevant_by_api(paper["title"], paper["summary"], api_key)
if relevant:
final_matched.append({
"title": paper["title"],
"published": paper["published"],
"link": paper["link"],
"categories": paper["categories"]
})
else:
# 如果不相关,就打印个提示
print(f"[DEBUG][API] => '0' => exclude paper #{idx}, title='{paper['title'][:60]}...'")
print(f"[DEBUG] final_matched = {len(final_matched)} after API check")
return final_matched
def update_readme_in_repo(papers, token, repo_name):
if not papers:
print("[INFO] No matched papers, skip README update.")
return
g = Github(token)
repo = g.get_repo(repo_name)
readme_file = repo.get_contents("README.md", ref="main")
old_content = readme_file.decoded_content.decode("utf-8")
now_utc_str = datetime.datetime.now(datetime.timezone.utc).strftime("%Y-%m-%d %H:%M UTC")
new_section = f"\n\n### Auto-captured papers on {now_utc_str}\n"
for p in papers:
cat_str = ", ".join(p["categories"])
new_section += f"- **{p['title']}** (Published={p['published']}) \n"
new_section += f" - Categories: {cat_str} \n"
new_section += f" - Link: {p['link']}\n\n"
updated_content = old_content + new_section
commit_msg = f"Auto update README with {len(papers)} new papers"
repo.update_file(
path="README.md",
message=commit_msg,
content=updated_content,
sha=readme_file.sha,
branch="main"
)
print(f"[INFO] README updated with {len(papers)} papers.")
def main():
# 抓过去5天(你例子里是5) 或根据需要改
days = 5
papers = fetch_papers_combined(days=days)
print(f"\n[RESULT] matched {len(papers)} papers total after double filter. Now update README if not empty...")
github_token = os.getenv("TARGET_REPO_TOKEN")
target_repo_name = os.getenv("TARGET_REPO_NAME")
if not github_token or not target_repo_name:
print("[ERROR] Missing environment variables: TARGET_REPO_TOKEN / TARGET_REPO_NAME.")
return
if papers:
update_readme_in_repo(papers, github_token, target_repo_name)
else:
print("[INFO] No matched papers, done without update.")
if __name__ == "__main__":
main()
|