summaryrefslogtreecommitdiff
path: root/scripts/fetch_papers.py
blob: 2c7d177ba750094676524b79e4b061c2631b0832 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import os
import requests
import feedparser
import datetime
from github import Github
from openai import OpenAI

ALLOWED_CATEGORIES = [
    "cs.AI", "cs.CL", "cs.CV", "cs.LG", "cs.NE", "cs.RO",
    "cs.IR", "stat.ML"
]

SYSTEM_PROMPT = (
    "You are a helpful assistant. The user will give you a paper title and abstract. "
    "Your task: Decide if this paper is about large language models (or generative text models) AND about bias/fairness. "
    "If yes, respond with just a single character: 1. Otherwise, respond with a single character: 0. "
    "No extra explanation, no punctuation—only the number."
)

def advanced_filter(entry):
    title = getattr(entry, 'title', '').lower()
    summary = getattr(entry, 'summary', '').lower()
    full_text = title + " " + summary

    general_terms = ["bias", "fairness"]
    model_terms = ["llm", "language model", "transformer", "gpt", "nlp",
                   "pretrained", "embedding", "generation", "alignment", "ai"]
    negative_terms = ["estimation", "variance", "quantum", "physics",
                      "sensor", "circuit", "electronics", "hardware"]

    has_general = any(term in full_text for term in general_terms)
    has_model   = any(term in full_text for term in model_terms)
    has_negative = any(term in full_text for term in negative_terms)

    return (has_general and has_model) and (not has_negative)

def is_relevant_by_api(title, summary, client, model="gpt-4-turbo"):
    prompt = f"Title: {title}\nAbstract: {summary}"
    try:
        dialogue = client.chat.completions.create(
            model=model,
            messages=[
                {"role": "system", "content": SYSTEM_PROMPT},
                {"role": "user", "content": prompt}
            ],
            temperature=0.0,
            max_tokens=1
        )
        response_msg = dialogue.choices[0].message.content.strip()
        print(f"[DEBUG][API] return message='{response_msg}' for paper title='{title[:60]}...'")
        return response_msg == "1"
    except Exception as e:
        print("[ERROR][API] calling OpenAI API:", e)
        return False

def fetch_papers_combined(days=1):
    now_utc = datetime.datetime.now(datetime.timezone.utc)
    start_utc = now_utc - datetime.timedelta(days=days)
    start_str = start_utc.strftime("%Y%m%d%H%M")
    end_str = now_utc.strftime("%Y%m%d%H%M")

    search_query = f"submittedDate:[{start_str} TO {end_str}]"

    base_url = "http://export.arxiv.org/api/query"
    step = 100
    start = 0
    all_entries = []

    while True:
        params = {
            "search_query": search_query,
            "sortBy": "submittedDate",
            "sortOrder": "descending",
            "start": start,
            "max_results": step
        }
        resp = requests.get(base_url, params=params, timeout=30)
        if resp.status_code != 200:
            break
        feed = feedparser.parse(resp.content)
        batch = feed.entries
        if not batch:
            break

        all_entries.extend(batch)
        start += step
        if start >= 3000:
            break

    local_candidates = [
        {
            "title": e.title,
            "summary": e.summary,
            "published": e.published,
            "link": e.link,
            "categories": [t.term for t in e.tags]
        }
        for e in all_entries
        if any(cat in ALLOWED_CATEGORIES for cat in [t.term for t in e.tags]) and advanced_filter(e)
    ]

    openai_api_key = os.getenv("OPENAI_API_KEY")
    if not openai_api_key:
        print("[WARNING] No OPENAI_API_KEY found. Skip second filter.")
        return local_candidates

    client = OpenAI(api_key=openai_api_key)
    final_matched = [p for p in local_candidates if is_relevant_by_api(p["title"], p["summary"], client)]

    return final_matched

def update_readme_in_repo(papers, token, repo_name):
    if not papers:
        return

    g = Github(token)
    repo = g.get_repo(repo_name)

    readme_file = repo.get_contents("README.md", ref="main")
    old_content = readme_file.decoded_content.decode("utf-8")

    now_utc_str = datetime.datetime.now(datetime.timezone.utc).strftime("%Y-%m-%d %H:%M UTC")
    new_section = f"\n\n### Auto-captured papers on {now_utc_str}\n"
    for p in papers:
        cat_str = ", ".join(p["categories"])
        new_section += f"- **{p['title']}** (Published={p['published']})  \n"
        new_section += f"  - Categories: {cat_str}  \n"
        new_section += f"  - Link: {p['link']}\n\n"

    updated_content = old_content + new_section
    commit_msg = f"Auto update README with {len(papers)} new papers"

    repo.update_file(
        path="README.md",
        message=commit_msg,
        content=updated_content,
        sha=readme_file.sha,
        branch="main"
    )

def main():
    days = 1
    papers = fetch_papers_combined(days=days)

    github_token = os.getenv("TARGET_REPO_TOKEN")
    target_repo_name = os.getenv("TARGET_REPO_NAME")
    if github_token and target_repo_name and papers:
        update_readme_in_repo(papers, github_token, target_repo_name)

if __name__ == "__main__":
    main()